9.給定命題:p:x<3,q:$\frac{3-x}{x-2}$>0,則p是q的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

分析 求出不等式的等價(jià)條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷.

解答 解:由:$\frac{3-x}{x-2}$>0得$\frac{x-3}{x-2}<$0,則2<x<3,
即q:2<x<3,
則p是q的必要不充分條件,
故選:C.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,求出不等式 等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在復(fù)平面內(nèi),與復(fù)數(shù)z=1-2i對(duì)應(yīng)的點(diǎn)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=$\sqrt{2sin(2x-\frac{π}{3})-1}$的增區(qū)間是( 。
A.$[kπ+\frac{π}{4},kπ+\frac{17π}{12}],(k∈Z)$B.$[kπ+\frac{π}{6},kπ+\frac{5π}{12}],(k∈Z)$
C.$[kπ+\frac{π}{4},kπ+\frac{5π}{12}],(k∈Z)$D.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],(k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)點(diǎn)(2,3)且與直線2x-3y-2=0平行的直線的點(diǎn)方向式方程是( 。
A.2(x-2)+3(y-3)=0B.$\frac{x-2}{-3}$=$\frac{y-3}{2}$C.3(x-2)+2(y-3)=0D.$\frac{x-2}{3}$=$\frac{y-3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a2+b2=c2+$\sqrt{2}$ab,則C=( 。
A.60°B.120°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.∫${\;}_{-1}^{1}$(x+x2+sinx)dx=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義在R上的函數(shù)f(x),若對(duì)任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱f(x)為“H函數(shù)”,給出下列函數(shù):①y=-x2+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=$\left\{\begin{array}{l}{|lnx|,x≠0}\\{0,x=0}\end{array}\right.$其中“H函數(shù)”的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=2n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,$\frac{{2}^{_{n+1}}}{{2}^{_{n}}}$=an+1,求數(shù)列{$\frac{1}{_{n}+n-1}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+|x+a|,$g(x)=\frac{1}{2}x+3$
(1)當(dāng)a=-2時(shí),求不等式f(x)<g(x)的解集;
(2)若a>-1,且當(dāng)x∈[-a,1]時(shí),不等式f(x)≤g(x)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案