【題目】某校夏令營有3名男同學3名女同學,其年級情況如下表:


一年級

二年級

三年級

男同學

A

B

C

女同學

X

Y

Z

現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同)

用表中字母列舉出所有可能的結(jié)果

設(shè)為事件選出的2人來自不同年級且恰有1名男同學和1名女同學,求事件發(fā)生的概率.

【答案】(1)15,(2)

【解析】

試題(1)列舉事件,關(guān)鍵是按一定順序,做到不重不漏.6名同學中隨機選出2人參加知識競賽的所有可能結(jié)果為

{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15.(2)為事件選出的2人來自不同年級且恰有1名男同學和1名女同學,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6.因此,事件發(fā)生的概率

試題解析:解(1)從6名同學中隨機選出2人參加知識競賽的所有可能結(jié)果為{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15.(2)選出的2人來自不同年級且恰有1名男同學和1名女同學的所有可能結(jié)果為{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6.因此,事件發(fā)生的概率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點,且與圓外切于點,過點作圓C的兩條切線PM,PN,切點為M,N.

(1)求圓C的標準方程;

(2)試問直線MN是否恒過定點?若過定點,請求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩圓(圓心,半徑),與(圓心,半徑)不是同心圓,方程相減(消去二次項)得到的直線叫做圓 與圓的根軸;

(1)求證:當相交于A,B兩點時,所在直線為根軸;

(2)對根軸上任意點P,求證:;

(3)設(shè)根軸交于點H,,求證:H的比;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點務(wù)極點,軸正半軸為極軸建立極坐標系,曲線,

(1)求曲線,的直角坐標方程;

(2)曲線的交點為,,求以為直徑的圓與軸的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設(shè)備甲每天的租賃費為元,設(shè)備乙每天的租賃費為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費最少為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有、兩個題目,該學生答對兩題的概率分別為、,兩題全部答對方可進入面試.面試要回答甲、乙兩個問題,該學生答對這兩個問題的概率均為,至少答對一個問題即可被聘用,若只答對一問聘為職員,答對兩問聘為助理(假設(shè)每個環(huán)節(jié)的每個題目或問題回答正確與否是相互獨立的).

1)求該學生被公司聘用的概率;

2)設(shè)該學生應(yīng)聘結(jié)束后答對的題目或問題的總個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是減函數(shù).

(1)試確定a的值;

(2)已知數(shù)列,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量與向量的對應(yīng)關(guān)系用表示.

(1) 證明:對于任意向量、及常數(shù)mn,恒有;

(2) 證明:對于任意向量;

(3) 證明:對于任意向量、,若,則.

查看答案和解析>>

同步練習冊答案