【題目】下面的程序框圖中,若輸入n=40,則輸出的結(jié)果為 .
【答案】121
【解析】解:模擬程序的運(yùn)行,可得n=40,S=40執(zhí)行循環(huán)體,n=32,S=72不滿足條件n=0,執(zhí)行循環(huán)體,n=24,S=96,不滿足條件n=0,執(zhí)行循環(huán)體,n=16,S=112,不滿足條件n=0,執(zhí)行循環(huán)體,n=8,S=120,不滿足條件n=0,執(zhí)行循環(huán)體,n=0,S=120,滿足條件n=0,可得S=121,退出循環(huán),輸出S的值為121.
所以答案是:121.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x﹣ )的圖象向右平移 個(gè)單位后得到函數(shù)g(x),則g(x)具有性質(zhì)( )
A.最大值為1,圖象關(guān)于直線x= 對稱
B.在(0, )上單調(diào)遞減,為奇函數(shù)
C.在(﹣ , )上單調(diào)遞增,為偶函數(shù)
D.周期為π,圖象關(guān)于點(diǎn)( ,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知傾斜角為135°且過點(diǎn)P(1,2)的直線l與曲線C交于M,N兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f'(x)=2x+m,且f(0)=0,函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線的斜率為3,數(shù)列 的前n項(xiàng)和為Sn , 則S2017的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)的任意一條切線都不與y軸垂直,求a的取值范圍;
(2)當(dāng)a=2時(shí),求使得f(x)+k>0成立的最小正整數(shù)k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2=r2(r>0)與直線l0:y= 相切,點(diǎn)A為圓C1上一動(dòng)點(diǎn),AN⊥x軸于點(diǎn)N,且動(dòng)點(diǎn)M滿足 ,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求動(dòng)點(diǎn)M的軌跡曲線C的方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)P、Q且滿足以PQ為直徑的圓過坐標(biāo)原點(diǎn)O,求線段PQ長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間直角坐標(biāo)系O﹣xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1, ),則三棱錐P﹣ABC在坐標(biāo)平面xOz上的正投影圖形的面積為;該三棱錐的最長棱的棱長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代名著《莊子天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完,現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長度(單位:尺),則①②③處可分別填入的是( 。
A.①i≤7?②s=s﹣ ③i=i+1
B.①i≤128?②s=s﹣ ③i=2i
C.①i≤7?②s=s﹣ ③i=i+1
D.①i≤128?②s=s﹣ ③i=2i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,真命題有 . (寫出所有真命題的序號)
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;②命題“x0∈R, +x0+1<0”的否定是“x∈R,x2+x+1≥0”;③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;④函數(shù)f(x)=ln x+x- 在區(qū)間(1,2)上有且僅有一個(gè)零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com