【題目】在平面直角坐標系中,已知平行于軸的動直線交拋物線 于點,點的焦點.圓心不在軸上的圓與直線 , 軸都相切,設的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相切于點,過且垂直于的直線為,直線, 分別與軸相交于點, .當線段的長度最小時,求的值.

【答案】(1) (2)見解析.

【解析】試題分析:(1)根據(jù)題意得到,化簡得到軌跡方程;(2), , , ,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.

解析:

(1)因為拋物線的方程為,所以的坐標為,

,因為圓軸、直線都相切, 平行于軸,

所以圓的半徑為,點 ,則直線的方程為,即,

所以,又,所以,即,

所以的方程為

(2)設, ,

由(1)知,點處的切線的斜率存在,由對稱性不妨設,

所以, ,

所以,

所以

, ,則,

,由,

所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,

所以當時, 取得極小值也是最小值,即取得最小值, 此時

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,8486,86,86,88,88,88,88.B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應相同的是

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次電視節(jié)目的答題游戲中,題型為選擇題,只有AB兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現(xiàn)記該選手答完n道題后總得分為”.

1)當時,記,求的分布列及數(shù)學期望;

2)當,時,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓周率是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù),它既常用又神秘,古今中外很多數(shù)學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個人的結(jié)論記錄下來就能算出圓周率的近似值.假設有個人說“能”,而有個人說“不能”,那么應用你學過的知識可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,動點、兩點連線的斜率之積為.

1)求點的軌跡的方程;

2)已知點是軌跡上的動點,點在直線上,且滿足(其中為坐標原點),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若是定義域上的增函數(shù),求的取值范圍;

2)設,分別為的極大值和極小值,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2,DE分別為AB,PB中點,PD⊥平面ABC,PD=3.

(1)求直線CE與直線PA夾角的余弦值;

(2)求直線PC與平面DEC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,過軸的垂線交橢圓于點(點軸上方),斜率為的直線交橢圓,兩點,過點作直線交橢圓于點,且,直線軸于點.

(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.

(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三年級某班50名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績統(tǒng)計如表.(說明:數(shù)學滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請估計數(shù)學成績的平均分;

2)根據(jù)物理成績統(tǒng)計表,請估計物理成績的中位數(shù);

3)若數(shù)學成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個“優(yōu)”同學總數(shù)為6人,從此6人中隨機抽取3人,記X為抽到兩個“優(yōu)”的學生人數(shù),求X的分布列和期望值.

查看答案和解析>>

同步練習冊答案