19.設(shè)f(x)=x8+3,求f(x)除以x+1所得的余數(shù)為4.

分析 根據(jù)余數(shù)定理計算f(-1)的值即可.

解答 解:由余數(shù)定理得:
f(-1)=(-1)8+3=4,
故答案為:4.

點評 本題考查了余數(shù)定理的應(yīng)用,求出f(-1)的值是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求不定積分∫$\frac{dx}{{x}^{2}\sqrt{{x}^{2}-4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
C.“若am2<bm2,則a<b”的逆否命題為真命題
D.命題“若$x=\frac{π}{4},則tanx=1$”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$({\begin{array}{l}1&2\\ 3&{-1}\end{array}})({\begin{array}{l}4\\ 2\end{array}})$=$(\begin{array}{l}{8}\\{10}\end{array})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=2x3+4x,且a+b<0,b+c<0,c+a<0,則f(a)+f(b)+f(c)的值是(  )
A.正數(shù)B.負數(shù)C.D.不能確定符號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.拋物線y2=-8x中,以(-1,1)為中點的弦所在的直線方程為4x+y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)$y=3sin({2x-\frac{π}{4}})$的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),0≤α<β≤2π,設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ:
①若|m$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$+m$\overrightarrow$|,(m<0),則$\overrightarrow{a}•\overrightarrow$的最小值$\frac{1}{2}$;
②若$\overrightarrow{a}$+$\overrightarrow{c}$=$\overrightarrow$且$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{a}$,則$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}=\overrightarrow{0}$;
③若α+β=$\frac{π}{6}$,記f(α)=2$\overrightarrow{a}$•$\overrightarrow$,則將f(α)的圖象保持縱坐標不變,橫坐標向左平移$\frac{π}{6}$個單位后得到的函數(shù)是偶函數(shù);
④已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,θ=$\frac{2π}{3}$,點C在以O(shè)為圓心的圓弧AB上運動,且滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,x,y∈R,則x+y∈[1,2].
上述正確命題的序號為④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標系xOy,圓C1和C2方程分別是C1:(x-2)2+y2=4和C2:x2+(y-1)2=1.以O(shè)為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=α與圓C1的交點為O,P,與圓C2的交點為O,Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

同步練習(xí)冊答案