9.在直角坐標系xOy,圓C1和C2方程分別是C1:(x-2)2+y2=4和C2:x2+(y-1)2=1.以O(shè)為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=α與圓C1的交點為O,P,與圓C2的交點為O,Q,求|OP|•|OQ|的最大值.

分析 (1)先分別求出一般方程,再寫出極坐標方程;
(2)利用極徑的意義,即可得出結(jié)論.

解答 解:(1)C1:(x-2)2+y2=4,即x2+y2-4x=0,極坐標方程為C1:ρ=4cosθ;
C2:x2+(y-1)2=1,即x2+y2-2y=0,極坐標方程為C1:ρ=2sinθ;
(2)設(shè)P,Q對應(yīng)的極徑分別為ρ1,ρ2,則|OP|•|OQ|=ρ1ρ2=4sin2α,
∴sin2α=1,|OP|•|OQ|的最大值為4.

點評 本題考查三種方程的轉(zhuǎn)化,考查極徑的意義的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)f(x)=x8+3,求f(x)除以x+1所得的余數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,若b=2,A=120°,三角形的面積$S=2\sqrt{3}$,則a=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若a為非零復數(shù),則下列四個命題都成立:
①若ab2>1,則$a>\frac{1}{b^2}$;
②a2-b2=(a+b)(a-b);
③$a+\frac{1}{a}≠0$;
④若|a|=|b|,則a=±b.
則對于任意非零復數(shù)a,b,上述命題仍成立的序號是( 。
A.B.①②C.③④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.正方體ABCD-A1B1C1D1,6個面的中心分別為E,F(xiàn),G,H,I,J,甲從這6個點鐘任選兩個點連成直線,乙也從這6個點鐘任選兩個點連成直線,則所得的兩條直線互相垂直的概率$\frac{1}{75}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.來自英、法、日、德的甲、乙、丙、丁四位客人,剛好碰在一起,他們除懂本國語言外,每天還會說其他三國語言的一種,有一種語言是三人都會說的,但沒有一種語言人人都懂,現(xiàn)知道:
①甲是日本人,丁不會說日語,但他倆都能自由交談;
②四人中沒有一個人既能用日語交談,又能用法語交談;
③甲、乙、丙、丁交談時,找不到共同語言溝通;
④乙不會說英語,當甲與丙交談時,他都能做翻譯.針對他們懂的語言
正確的推理是( 。
A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英
C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知$sin(π+α)=\frac{1}{2}(π<α<\frac{3π}{2})$,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知F1(-1,0),F(xiàn)2(1,0)分別是橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,點P在橢圓上,且PF2⊥F1F2,|PF1|-|PF2|=$\frac{a}{2}$.
(1)求橢圓G方程;
(2)若點B是橢圓G的是上頂點,過F2的直線l與橢圓G交于不同的兩點M,N,是否存在直線l,使得△BF2M與△BF2N的面積的比值為2?如果存在,求出直線l的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.從混有5張假幣的20張50元人民幣中任意抽取2張,將其中1張在驗鈔機上檢驗發(fā)現(xiàn)是假幣,則這兩張都是假幣的概率為$\frac{2}{17}$.

查看答案和解析>>

同步練習冊答案