7.計算:$\lim_{n→∞}\frac{2^n}{{{3^n}+1}}$=0.

分析 分子和分母同時除以3n,由此能求出結果.

解答 解:$\lim_{n→∞}\frac{2^n}{{{3^n}+1}}$=$\underset{lim}{n→∞}\frac{(\frac{2}{3})^{n}}{1+(\frac{1}{3})^{n}}$=0.
故答案為:0.

點評 本題考查極限的求法,是基礎題,解題時要認真審題,注意極限性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.定義在區(qū)間(-1,1)上的函數(shù)f(x)滿足:對任意的x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當x∈(-1,0),有f(x)>0.
(1)判斷f(x)在區(qū)間(-1,1)上的奇偶性,并給出理由;
(2)判斷f(x)在區(qū)間(-1,1)上的單調性,并給出證明;
(3)已知f($\frac{1}{2}$)=1,解不等式f(2x+1)+2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.曲線f(x)=$\frac{1}{3}$x3-2在點(-1,f(-1))處切線的斜率為( 。
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函f(x)數(shù)的導數(shù)f′(x)=3x2-3ax,f(0)=b,a,b為實數(shù),1<a<2.若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,則a-b的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設$f(x)=\left\{\begin{array}{l}1(1≤x≤2)\\ \frac{1}{2}{x^2}-1\;(2<x≤3)\end{array}\right.$,對任意的實數(shù)a,記h(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]}.
(1)h(0)=$\frac{5}{2}$.
(2)求h(a)的解析式及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.$\sqrt{3}x+y=0$的傾斜角的大小是120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.菱形ABCD中,E,F(xiàn)分別是AD,CD中點,若∠BAD=60°,AB=2,則$\overrightarrow{AF}$•$\overrightarrow{BE}$=( 。
A.$\frac{5}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.0<a<1是函數(shù)f(x)=2ax2+1取值恒為正的( 。l件.
A.充分非必要B.必要非充分
C.充要D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列關系中,正確的個數(shù)為( 。
①$\frac{{\sqrt{2}}}{2}∈R$
②0∈N*
③{-5}⊆Z
④∅={∅}.
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案