【題目】已知,函數(shù),

(Ⅰ)求函數(shù)處的切線;

(Ⅱ)若函數(shù)處有最大值,求實(shí)數(shù)a的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

I)根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,從而寫出切線的方程;(Ⅱ)利用先必要,后充分的方法縮小參數(shù)范圍,減少分類討論的情形,并通過(guò)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而判斷并求解函數(shù)在給定區(qū)間內(nèi)的最值.

解:(Ⅰ)因?yàn)?/span>

,又有

故函數(shù)處的切線為

(Ⅱ)由知函數(shù)的圖象過(guò)定點(diǎn),且,又因?yàn)楹瘮?shù)處有最大值,則,即

當(dāng)時(shí),上恒成立,上單調(diào)遞增,所以處有最大值,符合題意;

當(dāng)時(shí),,令,則,從而知上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增,故函數(shù)上的最大值為

又因?yàn)?/span>,所以,即,令,則上單調(diào)遞增,且,可得,則

綜上,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉的時(shí)間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?

(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,

(i)求這10人中,男生、女生各有多少人?

(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).

1)若,求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是直角梯形,,,.為折痕將折起,使點(diǎn)到達(dá)的位置,且,如圖2.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。

A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正四面體的棱長(zhǎng)為2是棱上一動(dòng)點(diǎn),若,則線段的長(zhǎng)度的最小值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形與等邊所在平面互相垂直,,,,分別是線段,的中點(diǎn).

1)求證:平面

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為kk為正整數(shù)).

1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三種部件生產(chǎn)需要的時(shí)間;

2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案