A. | $\frac{\sqrt{5}}{4}$ | B. | $\frac{15}{4}$ | C. | $\frac{17}{4}$ | D. | $\frac{\sqrt{17}}{4}$ |
分析 建立平面直角坐標(biāo)系,設(shè)E(x,0),求出$\overrightarrow{DE},\overrightarrow{DF}$的坐標(biāo),則$\overrightarrow{DE}•\overrightarrow{DF}$可表示為x的函數(shù),利用函數(shù)的性質(zhì)得出最小值.
解答 解以三角形的直角邊為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖:
則A(0,4),B(3,0),C(0,0),D($\frac{3}{2}$,2).設(shè)E(x,0),則F(0,$\sqrt{1-{x}^{2}}$).0≤x≤1.
∴$\overrightarrow{DE}$=(x-$\frac{3}{2}$,-2),$\overrightarrow{DF}$=(-$\frac{3}{2}$,$\sqrt{1-{x}^{2}}-2$).
∴$\overrightarrow{DE}•\overrightarrow{DF}$=$\frac{9}{4}$-$\frac{3}{2}x$+4-2$\sqrt{1-{x}^{2}}$=$\frac{25}{4}$-$\frac{3x}{2}$-2$\sqrt{1-{x}^{2}}$.
令f(x)=$\frac{25}{4}$-$\frac{3x}{2}$-2$\sqrt{1-{x}^{2}}$,則f′(x)=-$\frac{3}{2}$+$\frac{2x}{\sqrt{1-{x}^{2}}}$.
令f′(x)=0得x=$\frac{3}{5}$.
當(dāng)0≤x$<\frac{3}{5}$時,f′(x)<0,當(dāng)$\frac{3}{5}$<x<1時,f′(x)>0.
∴當(dāng)x=$\frac{3}{5}$時,f(x)取得最小值f($\frac{3}{5}$)=$\frac{15}{4}$.
故選:B.
點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,建立坐標(biāo)系是解題關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 5 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3n | B. | $\frac{2}{{3}^{n}}$ | C. | $\frac{1}{{3}^{n}}$ | D. | 3n-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com