已知函數(shù).
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試比較的大小.
(1) ;(2) ;(3).

試題分析:(1)先利用求出,然后在不等式中分離參數(shù),構(gòu)造函數(shù)求的范圍;(2) 要使在定義域上是單調(diào)函數(shù),則其導(dǎo)數(shù)應(yīng)在定義域上恒正或恒負(fù),利用,求出的最值,將在此處斷開討論,求出范圍;(3)由(1)知上單調(diào)遞減,所以時(shí),,而時(shí),,故可得證.
試題解析:(1)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824025630650546.png" style="vertical-align:middle;" />,所以,,由        1分
,可得上遞減,
上遞增,所以,即        4分
(2)若,令
當(dāng),當(dāng),所以時(shí)取得極小值即最小值
而當(dāng)時(shí) ,必有根,必有極值,在定義域上不單調(diào).
所以                                     8分
(3)由(1)知上單調(diào)遞減
所以時(shí),        10分
時(shí),,所以
所以                                         12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (為實(shí)常數(shù)) .
(1)當(dāng)時(shí),求函數(shù)上的最大值及相應(yīng)的值;
(2)當(dāng)時(shí),討論方程根的個(gè)數(shù).
(3)若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,函數(shù)的圖像在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn),(),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)上值域是,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若且函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中a為正實(shí)數(shù).
(l)若x=0是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若上無最小值,且上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線與曲線交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對(duì)定義域內(nèi)任意x,均有恒成立,求實(shí)數(shù)a的取值范圍?
(Ⅲ)證明:對(duì)任意的正整數(shù)恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是定義在實(shí)數(shù)集R上的奇函數(shù),且成立(其中的導(dǎo)函數(shù)),若,則a,b,c的大小關(guān)系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的導(dǎo)函數(shù)為             

查看答案和解析>>

同步練習(xí)冊答案