1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=( 。
分析:逐項進(jìn)行裂項,達(dá)到正負(fù)相消,化簡目的.
解答:解:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…(
1
9
-
1
10
)=1-
1
10
=0.9
故選D.
點評:本題考查了裂項法數(shù)列求和的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

Sn=
1
1•2
+
1
2•3
+
1
3•4
…+
1
n•(n+1)
(n∈N*)
,則S10等于(  )
A、
8
9
B、
9
10
C、
10
11
D、
11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+(1-m)x-1+2m-1-mx(m>0)
(1)當(dāng)x≥1時,若f(x)≤0恒成立,求實數(shù)m的取值范圍;
(2)證明:
1
1.2
+
1
2.3
+
1
3.4
+…+
1
(n-1)n
≥lnn(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的算法的程序框圖.
(1)標(biāo)號①處填
 
,標(biāo)號②處填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與下列偽代碼對應(yīng)的數(shù)學(xué)表達(dá)式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{
1
n(n+1)
}的前n項和Sn=
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n(n+1)
,研究一下,能否找到求Sn的一個公式.你能對這個問題作一些推廣嗎?

查看答案和解析>>

同步練習(xí)冊答案