【題目】對于實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是  

①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;

③方程有無數(shù)個根; ④函數(shù)f(x)是增函數(shù).

A. ②③ B. ①②③ C. D. ③④

【答案】A

【解析】

本題考查取整函數(shù)問題,在解答時要先充分理解[x]的含義,根據(jù)解析式畫出函數(shù)的圖象,結合圖象進行分析可得結果

畫出函數(shù)f(x)=x[x]的圖象,如下圖所示

由圖象得,函數(shù)f(x)的最大值小于1,故不正確;

函數(shù)f(x)的最小值為0,故正確;

函數(shù)每隔一個單位重復一次,所以函數(shù)有無數(shù)個零點,故正確;

函數(shù)f(x)有增有減,故不正確

故答案為:②③

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 、、均為等邊三角形, .

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數(shù)是偶函數(shù);
③f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
④f(x)的圖象關于直線x= 對稱.
其中正確說法的序號是(
A.②③
B.①④
C.①②④
D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在坐標軸上,焦距長為2,左準線為

1)求橢圓的方程及其離心率;

2)若過點的直線交橢圓, 兩點,且為線段的中點,求直線的方程;

3)過橢圓右準線上任一點引圓 的兩條切線,切點分別為, .試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合.

(1),求實數(shù)的值;

(2),求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐OO1的體積為π.設它的底面半徑為x,側面積為S

(1)試寫出S關于x的函數(shù)關系式;

(2)當圓錐底面半徑x為多少時,圓錐的側面積最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨購買AB商品分別付款168元和423元,假設他一次性購買A,B兩件商品,則應付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條切線,切點為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)

(1)當q=1時,求f(x)在[﹣1,9]上的值域;

(2)問:是否存在常數(shù)q(0<q<10),使得當x[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案