17.在△ABC中,角A,B,C所對的邊分別為a,b,c,$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角A的值;
(2)若△ABC的外接圓直徑為$\frac{4\sqrt{3}}{3}$,且b+c=4,求△ABC的面積.

分析 (1)由題意,利用向量平行的坐標(biāo)表示可得關(guān)于cosA 的方程,從而可求cosA,進(jìn)而可求A.
(2)由正弦定理可求a,再由余弦定理可得:22=b2+c2-2bccos60°,及b+c=4,聯(lián)解得bc=4,利用三角形面積公式即可得解.

解答 (本題滿分為12分)
解:(1)由$\overrightarrow{m}$∥$\overrightarrow{n}$,得:2acosC=2b-c,…(2分)
由正弦定理得:2sinAcosC=2sinB-sinC=2sin(A+C)-sinC=2sinAcosC+2cosAsinC-sinC,…(4分)
又sinC≠0,
∴cosA=$\frac{1}{2}$,解得A=$\frac{π}{3}$.…(6分)
(2)由△ABC的外接圓直徑為$\frac{4\sqrt{3}}{3}$,
所以由正弦定理$\frac{a}{sin60°}=2R$=$\frac{4\sqrt{3}}{3}$,
所以a=2,(8分)
再由余弦定理可得:22=b2+c2-2bccos60°…..①…(10分)
又因為b+c=4…②,聯(lián)解得bc=4,
所以△ABC的面積的面積為:$\frac{1}{2}$bcsin60°=$\sqrt{3}$.…(12分)

點評 本題主要考查了向量平行的坐標(biāo)表示,正弦定理,余弦定理,三角形面積公式的綜合應(yīng)用,考查了轉(zhuǎn)化思想和計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列判斷中,正確的判斷是(  )(填序號)
A.若$\overrightarrow{a}$∥$\overrightarrow$,則向量$\overrightarrow{a}$和$\overrightarrow$是相反向量
B.已知非零向量$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$-$\overrightarrow$必與$\overrightarrow{a}$是平行向量
C.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=λ$\overrightarrow{a}$(λ∈R)
D.若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列$\{a_n^{\;}\}$滿足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求證:數(shù)列$\{a_n^{\;}+2\}$是等比數(shù)列,并求出通項公式an;
(2)若數(shù)列$\{b_n^{\;}\}滿足b_n^{\;}={log_2}({a_n}+2)$,設(shè)Tn是數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項和,求證:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}中,a1+a2+a3=1,a4+a5+a6=8,則該等比數(shù)列的公比為( 。
A.-2B.2C.-2或1D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|-2<x<7 },B={x|x>1,x∈N},則A∩B的元素的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.根據(jù)條件求下列各函數(shù)的解析式:
(1)已知f(x)是二次函數(shù),若f(0)=0,f(x+1)=f(x)+x+1,求f(x).
(2)已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,求f(x)
(3)若f(x)滿足$f(x)+2f(\frac{1}{x})=ax$,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:|1-$\frac{x-1}{3}$|≤2,命題q:x2-2x+(1-m)(1+m)≤0(m>0),若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足約束條件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,則目標(biāo)函數(shù)z=7x-y的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過點(1,2)且與圓x2+y2=5相切的直線的方程是x+2y-5=0.

查看答案和解析>>

同步練習(xí)冊答案