5.等比數(shù)列{an}中,a1+a2+a3=1,a4+a5+a6=8,則該等比數(shù)列的公比為( 。
A.-2B.2C.-2或1D.2或-1

分析 設(shè)出等比數(shù)列的公比,由已知列式求得q3,則公比可求.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
由a1+a2+a3=1  ①,
a4+a5+a6=q3(a1+a2+a3)=8  ②,
②÷①得:q3=8,∴q=2.
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)是2x與$\frac{2a}{x}$的平均值(x≠0.且x,a∈R).
(1)當(dāng)a=1時(shí),求f(x)在[$\frac{1}{2}$,2]上的值域;
(2)若不等式f(2x)<-2x+$\frac{1}{{2}^{x}}$+1在[0,1]上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)設(shè)g(x)=$\frac{\sqrt{1-{x}^{4}}}{1+{x}^{2}}$,是否存在正數(shù)a,使得對(duì)于區(qū)間[-$\frac{2}{\sqrt{5}}$,$\frac{2}{\sqrt{5}}$]上的任意三個(gè)實(shí)數(shù)m、n、p,都存在以f(g(m)、f(g(n))、f(g(p))為邊長(zhǎng)的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=2x-x2,則函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若直線y=m與y=3x-x3的圖象有三個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.(-2,2)B.[-2,2]C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知非零數(shù)列{an}滿足a1=1,anan+1=an-2an+1(n∈N*).
(1)求證:數(shù)列$\left\{{1+\frac{1}{a_n}}\right\}$是等比數(shù)列;
(2)若關(guān)于n的不等式$\frac{1}{{n+{{log}_2}({1+\frac{1}{a_1}})}}+\frac{1}{{n+{{log}_2}({1+\frac{1}{a_2}})}}+…+\frac{1}{{n+{{log}_2}({1+\frac{1}{a_n}})}}$<m-3有解,求整數(shù)m的最小值;
(3)在數(shù)列$\left\{{1+\frac{1}{a_n}-{{({-1})}^n}}\right\}$中,是否存在首項(xiàng)、第r項(xiàng)、第s項(xiàng)(1<r<s≤6),使得這三項(xiàng)依次構(gòu)成等差數(shù)列?若存在,求出所有的r、s;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列各選項(xiàng)中敘述錯(cuò)誤的是( 。
A.命題“若x≠1,則x2-3x+2≠0”的否命題是“若x=1,則x2-3x+2=0”
B.命題“?x∈R,lg(x2+x+1)≥0”是假命題
C.已知a,b∈R,則“a>b”是“2a>2b-1”的充分不必要條件
D.命題“若x=2,則向量$\overrightarrow{a}$=(-x,1)與$\overrightarrow$=(-4,x)共線”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角A的值;
(2)若△ABC的外接圓直徑為$\frac{4\sqrt{3}}{3}$,且b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a=sin$\frac{3π}{5}$,b=cos$\frac{2π}{5}$,c=tan$\frac{2π}{5}$,則( 。
A.b<a<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過(guò)點(diǎn)(4,-$\sqrt{10}$),點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:MF1⊥MF2
(3)從雙曲線的左焦點(diǎn)F1引以原點(diǎn)為圓心,實(shí)半軸長(zhǎng)為半徑的圓的切線,求切線與雙曲線的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案