已知點P是直線l:3x-4y+8=0上的動點,PA、PB是圓x2+y2-2x-2y+1=0的兩條切線,A、B為切點,C是圓心,那么四邊形PACB面積的最小值為_____________________.

解析:∵圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=1,

   ∴C(1,1),r=1.

    C到直線l的距離d==>r.

    ∴S四邊形PACB=S△PCB+S△PAC

    =|PA|·|CB|+|PA|·|CA|

    =|PA|.

    而|PA|=

    ==.

    ∴四邊形面積的最小值為.

答案:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)與向量、圓交匯.例5:已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點,其中F1也是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足:
AP
=-λ
PB
,
AQ
QB
,(λ≠0且λ≠±1).問點Q是否總在某一定直線上?若在,求出這條直線,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線x=-
p
2
-1
(p是正常數(shù))的距離為d1,到點F(
p
2
,0)
的距離為d2,且d1-d2=1.(1)求動點P所在曲線C的方程;
(2)直線l 過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線l1:x=-
p
2
的垂線,對應(yīng)的垂足分別為M、N,求證=
FM
FN
=0
;
(3)記S1=S△FAM,S2=S△FMN,S3=S△FEN(A、B、M、N是(2)中的點),λ=
S
2
2
S1S3
,求λ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設(shè)直線l與拋物線交于A、B兩點,與拋物線的準(zhǔn)線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶二模)已知點P是圓F1(x+
3
)2+y2=16
上任意一點,點F2與點F1關(guān)于原點對稱.線段PF2的中垂線與PF1交于M點.
(1)求點M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個左右交點分別為A,B,點K是軌跡C上異于A,B的任意一點,KH⊥x軸,H為垂足,延長HK到點Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點D,N為DB的中點.試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直線l上一點,將l繞點P逆時針方向旋轉(zhuǎn)角α(0<α<)得直線l1,其方程為3x-y-4=0,再將l繼續(xù)繞點P逆時針方向旋轉(zhuǎn)-α得直線l2,其方程x+2y+1=0,那么直線l的方程是(    )

A.x+3y=0           B.2x-y=0            C.x+3y+2=0          D.2x-y-3=0

查看答案和解析>>

同步練習(xí)冊答案