已知=2,點()在函數(shù)的圖像上,其中=.

(1)設(shè),求及數(shù)列{}的通項公式;

(2)記,求數(shù)列{}的前n項和,并求.

【解析】本試題主要考查了數(shù)列的通項公式和數(shù)列求和的運用。注意構(gòu)造等比數(shù)列的思想的運用。并能運用裂項求和。

 

【答案】

(1)證明:由已知,

兩邊取對數(shù)得,即

是公比為2的等比數(shù)列。

(2)解:由(1)知=

(3)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函f(x)的圖象關(guān)于點(-
3
4
,0
)對稱,且滿足f(x)=-f(x+
3
2
),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=x2-8lnx,g(x)=-x2+14x
(1)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)與g(x)在區(qū)間(a,a+1)上均為增函數(shù),求a的取值范圍;
(3)若方程f(x)=g(x)+m有唯一解,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=x3+ax2+bx+5,若x=
23
,y=f(x) 有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函致f (x)=x3+bx2+cx+d.
(I)當(dāng)b=0時,證明:曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點;
(Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線為12x+y-13=0,記函數(shù)y=f(x)的兩個極值點為x1,x2,當(dāng)x1+x2=2時,求f(x1)+f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),

(1)若函數(shù)在[l,+∞]上是增函數(shù),求實數(shù)的取值范圍。

(2)若=一的極值點,求在[l,]上的最大值:

(3)在(2)的條件下,是否存在實數(shù)b,使得函數(shù)g()=b的圖像與函的圖像恰有3個交點,若存在,求出實數(shù)b的取值范圍:若不存在,試說明理由。

查看答案和解析>>

同步練習(xí)冊答案