17.已知函數(shù)f(x)=|2x-1|,g(x)=x2-(2+3k)x+2k+1,若函數(shù)y=g[f(x)]有3個不同零點,則k的范圍是( 。
A.k=-$\frac{1}{2}$或k>0B.-$\frac{1}{2}$<k<0或k>0C.k≥-$\frac{1}{2}$D.k≥0

分析 作函數(shù)f(x)=|2x-1|的圖象,從而可得g(x)有兩個不同的零點,且其中一個必在區(qū)間(0,1)上,另一個零點為0或≥1;從而解得.

解答 解:作函數(shù)f(x)=|2x-1|的圖象如下,
,
∵函數(shù)y=g[f(x)]有3個不同零點,
∴g(x)=x2-(2+3k)x+2k+1有兩個不同的零點,且其中一個必在區(qū)間(0,1)上,另一個零點為0或≥1;
若g(0)=0,則k=-$\frac{1}{2}$,
則此時g(x)的零點為0和$\frac{1}{2}$,成立;
若g(x)=x2-(2+3k)x+2k+1的零點分別在(0,1)上與[1,+∞)上;
則$\left\{\begin{array}{l}{△=(2+3k)^{2}-4(2k+1)>0}\\{g(1)=1-2-3k+2k+1<0}\\{g(0)=2k+1>0}\end{array}\right.$,
解得,k>0,
綜上所述,k=-$\frac{1}{2}$或k>0,
故選A.

點評 本題考查了函數(shù)的零點的個數(shù)的判斷與應(yīng)用,同時考查了數(shù)形結(jié)合的思想與分類討論的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.2015年高中生技能大賽中三所學(xué)校分別有3名、2名、1名學(xué)生獲獎,這6名學(xué)生要排成一排合影,則同校學(xué)生排在一起的概率是( 。
A.$\frac{1}{30}$B.$\frac{1}{15}$C.$\frac{1}{10}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知三棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,D為A1C1的中點,B1C⊥A1B.
(Ⅰ)求證:平面AB1C垂直平面A1BC1;
(Ⅱ)求證:A1B∥平面B1CD;
(Ⅲ)若AB=AC=BC=AB1=B1C=2,求三棱柱ABC-A1B1C1的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正三棱錐S-ABC中,E是側(cè)棱SC的中點,且SA⊥BE,則SB與底面ABC所成角的余弦值為( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A,B(不與原點O重合)分別在圓C1:(x-2)2+y2=4與圓C2:(x-1)2+y2=1上,且OA⊥OB.
(1)若以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)A的極角為$\frac{π}{3}$時,求A,B的極坐標(biāo);
(2)求|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.使不等式tanx$≥\sqrt{3}$成立的x的集合為( 。
A.(kπ+$\frac{π}{6}$,kπ+$\frac{π}{2}$)k∈ZB.[kπ+$\frac{π}{6}$,kπ+$\frac{π}{2}$)k∈ZC.[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$)k∈ZD.(kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$)k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.每年七夕,琳瑯滿目的飾品在各大品牌店中成為年輕人親瞇的對象,這也使各大珠寶公司挖空心思,設(shè)計出匠心獨運的飾品.某珠寶公司市場專員甲對該公司的一款項鏈的單價x(百元)和單位時間內(nèi)的銷售量y(件)之間的關(guān)系作出價格分析,所得數(shù)據(jù)如下:
單價x(百元) a1a2a3 a4 a5 
 單位時間內(nèi)銷售量y(件) 14 13 10 75
其中價格x(元)恰為公差為2的等差數(shù)列{an}的前5項,且等差數(shù)列{an}的前10項和為230.
(1)請根據(jù)上述數(shù)據(jù)在下列網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)表格數(shù)據(jù)計算項鏈的單價x(百元)和單位時間內(nèi)的銷售量y(件)之間的回歸直線方程.
$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)n>2時,證明:3n>(n+2)•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若A(2,-1),B(4,3)到直線l的距離相等,且l過點P(1,1),則直線1的方程為( 。
A.2x-y-1=0B.x-2y+1=0C.x=1或x-2y+1=0D.y=1或2x-y-1=0

查看答案和解析>>

同步練習(xí)冊答案