在某高校自主招生考試中,所有選報(bào)II類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)科目的考試,成績(jī)分為五個(gè)等級(jí). 某考場(chǎng)考生的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中“數(shù)學(xué)與邏輯”科目的成績(jī)?yōu)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824041205781292.png" style="vertical-align:middle;" />的考生有人.

(1)求該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)?yōu)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824041205812298.png" style="vertical-align:middle;" />的人數(shù);
(2)若等級(jí)分別對(duì)應(yīng)分,分,分,分,分,求該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分;
(3)已知參加本考場(chǎng)測(cè)試的考生中,恰有兩人的兩科成績(jī)均為. 在至少一科成績(jī)?yōu)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824041205812298.png" style="vertical-align:middle;" />的考生中,隨機(jī)抽取兩人進(jìn)行訪談,求這兩人的兩科成績(jī)均為的概率.
(1);(2);(3).

試題分析:(1)注意根據(jù)“數(shù)學(xué)與邏輯”科目中成績(jī)等級(jí)為B的考生有10人,計(jì)算出該考場(chǎng)人數(shù).進(jìn)一步計(jì)算“閱讀與表達(dá)”科目中成績(jī)?yōu)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824041205812298.png" style="vertical-align:middle;" />的頻率乘以考場(chǎng)人數(shù).
(2)利用“平均數(shù)”計(jì)算公式即得.
(3)確定兩科考試中,共有6人次得分等級(jí)為A,又恰有兩人的兩科成績(jī)等級(jí)均為A,
推斷出有四人設(shè)為甲,乙,丙,丁,其中甲,乙是兩科成績(jī)都是A的同學(xué),則在至少一科成績(jī)等級(jí)為A的考生中,隨機(jī)抽取兩人進(jìn)行訪談,寫(xiě)出基本事件空間:
{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},有6個(gè)基本事件
兩科成績(jī)等級(jí)均為A的事件只有{甲,乙},故所求概率.
試題解析:(1)因?yàn)椤皵?shù)學(xué)與邏輯”科目中成績(jī)等級(jí)為B的考生有10人,
所以該考場(chǎng)有人        2分
所以該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)等級(jí)為A的人數(shù)為        4分
(2)該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分為
        7分
(3)因?yàn)閮煽瓶荚囍校灿?人得分等級(jí)為A,又恰有兩人的兩科成績(jī)等級(jí)均為A,
所以還有2人只有一個(gè)科目得分為A,
設(shè)這四人為甲,乙,丙,丁,其中甲,乙是兩科成績(jī)都是A的同學(xué),則在至少一科成績(jī)等級(jí)為A的考生中,隨機(jī)抽取兩人進(jìn)行訪談,基本事件空間為
{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},有6個(gè)基本事件
設(shè)“隨機(jī)抽取兩人進(jìn)行訪談,這兩人的兩科成績(jī)等級(jí)均為A”為事件B,所以事件B中包含的基本事件有1個(gè),則.         12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某工廠生產(chǎn)兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各件進(jìn)行檢測(cè),檢測(cè)結(jié)果記錄如下:






B





由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計(jì)員只記得,且、兩種元件的檢測(cè)數(shù)據(jù)的平均值相等,方差也相等.
(1)求表格中的值;
(2)從被檢測(cè)的種元件中任取件,求件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計(jì)的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區(qū)間





人數(shù)

a
b
 
 
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校高三有四個(gè)班,某次數(shù)學(xué)測(cè)試后,學(xué)校隨機(jī)地在各班抽取部分學(xué)生進(jìn)行測(cè)試成績(jī)統(tǒng)計(jì),各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人. 抽取出來(lái)的所有學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)結(jié)果的頻率分布條形圖如圖所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分?jǐn)?shù)段的人數(shù)為5人.
(1)問(wèn)各班被抽取的學(xué)生人數(shù)各為多少人?
(2)求平均成績(jī);
(3)在抽取的所有學(xué)生中,任取一名學(xué)生,求分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以下四個(gè)命題中:
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于;
③在某項(xiàng)測(cè)量中,測(cè)量結(jié)果服從正態(tài)分布,若位于區(qū)域內(nèi)的概率為,則位于區(qū)域內(nèi)的概率為;
④對(duì)分類變量的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“有關(guān)系”的把握越大.其中真命題的序號(hào)為(    )
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級(jí)如下表:
API
0~50
51~
100
101~
150
151~
200
201~
250
251~
300
>300
級(jí) 別


1
2
1
2

狀 況
優(yōu)

輕微
污染
輕度
污染
中度
污染
中度
重污染
重度
污染
 





對(duì)某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測(cè),獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進(jìn)行分組,得到頻率分布直方圖如圖.

(1)求直方圖中x的值.
(2)計(jì)算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).
(3)求該城市某一周至少有2天的空氣質(zhì)量為良或輕微污染的概率.
(結(jié)果用分?jǐn)?shù)表示.
已知57=78125,27=128,++++=,365=73×5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持的兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有________的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”(  )
附:
P(K2k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%   B.1%   C.99%   D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某學(xué)校從高二甲、乙兩個(gè)班中各選6名同掌參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的眾數(shù)是85,乙班學(xué)生成績(jī)的平均分為81,則x+y的值為(    )
A.6B.7
C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

甲、乙兩棉農(nóng),統(tǒng)計(jì)連續(xù)五年的面積產(chǎn)量(千克∕畝)如下表:
棉農(nóng)甲
68
72
70
69
71
棉農(nóng)乙
69
71
68
68
69
則平均產(chǎn)量較高與產(chǎn)量較穩(wěn)定的分別是
A.棉農(nóng)甲,棉農(nóng)甲                       B.棉農(nóng)甲,棉農(nóng)乙
C.棉農(nóng)乙,棉農(nóng)甲                       D.棉農(nóng)乙,棉農(nóng)乙

查看答案和解析>>

同步練習(xí)冊(cè)答案