正方體ABCD-A1B1C1D1中O為正方形ABCD的中心,M為BB1的中點,求證:
(1)D1O∥平面A1BC1
(2)D1O⊥平面MAC.

證明:(1)連接BD,B1D1分別交AC,A1C1于O,O1
在正方體ABCD-A1B1C1D1中,對角面BB1D1D為矩形
∵O,O1分別是BD,B1D1的中點∴∴四邊形BO1D1O為平行四邊形∴BO1∥D1O
∵D1O?平面A1BC1,BO1?平面A1BC1∴D1O∥平面A1BC1
(2)連接MO,設正方體ABCD-A1B1C1D1的棱長為a,
在正方體ABCD-A1B1C1D1中,對角面BB1D1D為矩形且
∵O,M分別是BD,BB1的中點∴

由于Rt△MBO≌Rt△ODD1∴∠BOM=∠DD1O
∵在Rt△ODD1中,∠DD1O+∠D1OD=90°
∴∠BOM+∠D1OD=90°,即D1O⊥MO在正方體ABCD-A1B1C1D1
∵DD1⊥平面ABCD
∴DD1⊥AC又∵AC⊥BD,DD1∩BD=D∴AC⊥平面BB1D1D
∵D1O?平面BB1D1D∴AC⊥D1O又AC∩MO=O
∴D1O⊥平面MAC.
分析:(1)連接BD,B1D1分別交AC,A1C1于O,證明,BO1∥D1O,推出D1O∥平面A1BC1
(2)連接MO,設正方體ABCD-A1B1C1D1的棱長為a,證明AC⊥平面BB1D1D,然后證明D1O⊥平面MAC.
點評:本題是中檔題,考查直線與平面的垂直,直線與平面的平行,能夠正確利用直線與平面平行的判斷定理,直線與平面垂直的判斷定理,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習冊答案