11.點(diǎn)(0,2)關(guān)于直線l:x+y-1=0的對(duì)稱點(diǎn)的坐標(biāo)為(-1,1).

分析 設(shè)出對(duì)稱的點(diǎn)的坐標(biāo)(a,b),利用點(diǎn)(0,2)與對(duì)稱的點(diǎn)的連線與對(duì)稱軸垂直,以及點(diǎn)(0,2)與對(duì)稱的點(diǎn)的連線的中點(diǎn)在對(duì)稱軸上,解出對(duì)稱點(diǎn)的坐標(biāo)

解答 解:設(shè)點(diǎn)P(0,2)關(guān)于直線x+y-1=0的對(duì)稱點(diǎn)P′的坐標(biāo)(a,b),
∴$\frac{b-2}{a}=1$,即a-b=-2,
且$\frac{a}{2}$+$\frac{b+2}{2}$-1=0,即a+b=0,
解得a=-1,b=1,∴點(diǎn)P′的坐標(biāo)為(-1,1).
故答案為:(-1,1)

點(diǎn)評(píng) 本題考查了點(diǎn)關(guān)于線對(duì)稱的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將下列復(fù)數(shù)化為指數(shù)形式和極坐標(biāo)形式.
(1)$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)
(2)cos75°-isin75°
(3)-cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
(4)-cos1+isin1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國魏晉時(shí)期的數(shù)學(xué)家劉徽在《九章算術(shù)注》中首創(chuàng)割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形割圓,通過逐步增加正多邊形的邊數(shù)而使正多邊形的周長(zhǎng)無限接近圓的周長(zhǎng),進(jìn)而來求得較為精確的圓周率,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中n表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(數(shù)據(jù)sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)( 。
A.3,3.1248,3.1320B.3,3.1056,3.1248C.3,3.1056,3.1320D.3,3.1,3.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的首項(xiàng)a1=t,其前n項(xiàng)和為Sn,且滿足Sn+Sn+1=n2+2n,若對(duì)?n∈N*,an<an+1恒成立,則實(shí)數(shù)t的取值范圍是($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關(guān)系,某農(nóng)科所對(duì)此關(guān)系進(jìn)行了調(diào)查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-3|+3
(1)求不等式f(x)<2x的解集
(2)求不等式f(x)<6-|x-2|的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,圓:x2+y2=4,直線l:4x+3y-20=0.A($\frac{4}{5}$,$\frac{3}{5}$)為圓O內(nèi)一點(diǎn),弦MN過點(diǎn)A,過點(diǎn)O作MN的垂線交l于點(diǎn)P.
(1)若MN∥l.
       ①求直線MN的方程;
       ②求△PMN的面積.
(2)判斷直線PM與圓O的位置關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.以下命題中,真命題有( 。
①對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,由樣本數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必過樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$);
②若數(shù)據(jù)x1,x2,x3,…,xn的方差為2,則2x1,2x2,2x3,…,2xn的方差為4;
③已知兩個(gè)變量線性相關(guān),若它們的相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.空間兩點(diǎn)A(1,2,-2),B(-1,0,-1)之間的距離為( 。
A.5B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案