【題目】為了響應(yīng)教育部頒布的《關(guān)于推進中小學(xué)生研學(xué)旅行的意見》,某校計劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選課意向進行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.
圖中,課程為人文類課程,課程為自然科學(xué)類課程.為進一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組”).
(Ⅰ)在“組”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學(xué)營活動,學(xué)校要求:參加活動的學(xué)生只能是“組”中選擇課
程或課程的同學(xué),并且這些同學(xué)以自愿報名繳費的方式參加活動. 選擇課程的學(xué)生中有人參加科學(xué)營活動,每人需繳納元,選擇課程的學(xué)生中有人參加該活動,每人需繳納元.記選擇課程和課程的學(xué)生自愿報名人數(shù)的情況為,參加活動的學(xué)生繳納費用總和為元.
①當(dāng)時,寫出的所有可能取值;
②若選擇課程的同學(xué)都參加科學(xué)營活動,求元的概率.
【答案】(Ⅰ) 12,8; (Ⅱ)(ⅰ) ;(ⅱ) .
【解析】【試題分析】(1)借助題設(shè)條件運用題設(shè)中提供頻率分布直方圖進行求解;(2)依據(jù)題設(shè)借助列舉法將所有可能都列舉出來,運用古典概型的計算公式進行分析求解:
(Ⅰ)選擇人文類課程的人數(shù)為(100+200+400+200+300) 1%=12(人);
選擇自然科學(xué)類課程的人數(shù)為(300+200+300) 1%=8(人).
(Ⅱ)(ⅰ)當(dāng)繳納費用S=4000時, 只有兩種取值情況: ;
(ⅱ)設(shè)事件若選擇G課程的同學(xué)都參加科學(xué)營活動,繳納費用總和S超過4500元.
在“組M”中,選擇F課程和G課程的人數(shù)分別為3人和2人.
由于選擇G課程的兩名同學(xué)都參加,下面考慮選擇F課程的3位同學(xué)參加活動的情況.設(shè)每名同學(xué)報名參加活動用a表示,不參加活動用b表示,則3名同學(xué)報名參加活動的情況共有以下8種情況:aaa,aab,aba,baa,bba,bab,abb,bbb.
當(dāng)繳納費用總和S超過4500元時,選擇F課程的同學(xué)至少要有2名同學(xué)參加,有如下4種:aaa,aab,aba,baa.所以, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若,求曲線在點處的切線的方程;
(II)設(shè)函數(shù)有兩個極值點,其中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).
(Ⅰ)可組成多少個不同的四位數(shù)?
(Ⅱ)可組成多少個不同的四位偶數(shù)?
(Ⅲ)將(Ⅰ)中的四位數(shù)按從小到大的順序排成一數(shù)列,問第項是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面α∥平面β,P是α,β外一點,過點P的直線m與α,β分別交于點A,C,過點P的直線n與α,β分別交于點B,D,且PA=6,AC=9,PD=8,則BD的長為( )
A.
B.
C.或24
D.或12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用分期付款的方式購買某家用電器一件,價格為1 150元,購買當(dāng)天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個月還清,月利率為1%,按復(fù)利計算.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,請問買這件家電實際付款多少元?每月還款多少元?(最后結(jié)果保留4個有效數(shù)字)
參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1 , E,F(xiàn),P,Q分別是BC,C1D1 , AD1 , BD的中點,求證:
(1)PQ∥平面DCC1D1
(2)EF∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, , 兩點的坐標(biāo)分別為, ,動點滿足:直線與直線的斜率之積為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作兩條互相垂直的直線, 分別交曲線于, 兩點,設(shè)的斜率為(),的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(Ⅰ)求圖中的值;
(Ⅱ)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān)?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(參考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com