A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\sqrt{13}$ |
分析 根據(jù)向量條件,求出P的坐標,代入雙曲線方程,即可得出結(jié)論.
解答 解:由題意,設(shè)P(x,y),直線FH的方程為y=$\frac{a}$(x+c),
與漸近線y=-$\frac{a}$x聯(lián)立,可得H的坐標為(-$\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
∵$\overrightarrow{FP}$=3$\overrightarrow{FH}$,
∴(x+c,y)=3(-$\frac{{a}^{2}}{c}$+c,$\frac{ab}{c}$),
∴x=-$\frac{3{a}^{2}}{c}$+2c,y=$\frac{3ab}{c}$,
代入雙曲線方程可得,$\frac{(-\frac{3{a}^{2}}{c}+2c)^{2}}{{a}^{2}}-\frac{9{a}^{2}}{{c}^{2}}$=1,
化簡可得$\frac{4{c}^{2}}{{a}^{2}}$=13,
∴e=$\frac{c}{a}$=$\frac{\sqrt{13}}{2}$.
故選C.
點評 本題考查雙曲線的方程與性質(zhì),考查向量知識的運用,確定P的坐標是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{9}{4}$ | C. | 4 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com