分析 直線l經(jīng)過A(4,0)、B(0,3),可得方程為3x+4y-12=0.根據(jù)直線l1⊥l,且與兩坐標軸圍成的三角形的面積為6,可設直線l1的方程為:4x-3y+m=0.可得與坐標軸的交點$(-\frac{m}{4},0)$,$(0,\frac{m}{3})$.利用三角形面積計算公式即可得出m.
解答 解:直線l經(jīng)過A(4,0)、B(0,3),可得方程為:$\frac{x}{4}+\frac{y}{3}$=1,即3x+4y-12=0.
直線l1⊥l,且與兩坐標軸圍成的三角形的面積為6,可設直線l1的方程為:4x-3y+m=0.
可得與坐標軸的交點$(-\frac{m}{4},0)$,$(0,\frac{m}{3})$.
∴$\frac{1}{2}×|-\frac{m}{4}|×|\frac{m}{3}|$=6,解得m=±12.
∴直線l1的方程為:4x-3y±12=0.
點評 本題考查了直線的方程、相互垂直的直線斜率之間的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{47}{16}$,2] | B. | [-$\frac{47}{16}$,$\frac{39}{16}$] | C. | [-2$\sqrt{3}$,2] | D. | [-2$\sqrt{3}$,$\frac{39}{16}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | B. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{3}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$+1 | D. | $\sqrt{3}$+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{2}$] | B. | (1,2] | C. | [$\sqrt{2}$,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x>1} | B. | {x|x<1} | C. | {x|0<x<1} | D. | {x|x>1或x<-1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com