【題目】如圖,棱長為1的正方體中,點P是線段上的動點.當在平面,平面,平面ABCD上的正投影都為三角形時,將它們的面積分別記為,

1)當時,________(用“=”填空);

2的最大值為________

【答案】

【解析】

1)根據(jù)題意得出在平面,平面上的投影高度都為,并且底邊邊長都相等,則面積也相等;

2)根據(jù)投影的定義得出這三個三角形的高,當點運動到點時,最大,根據(jù)三角形面積公式求出最大值即可.

1)當時,上靠近的三等分點,在平面,平面上的投影高度都為,此時兩個三角形的底邊邊長都為,所以

2)因為的底邊邊長都為,其高為均為點的高度,的底邊為,高為點在底面的投影到的距離,所以當點運動到點時,最大

其最大值為

故答案為:(12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線 與橢圓有且只有一個公共點.

(Ⅰ)求橢圓的方程及點的坐標;

(Ⅱ)設是坐標原點,直線平行于,與橢圓交于不同的兩點,且與直線交于點,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】依據(jù)黃河濟南段8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖()所示:依據(jù)濟南的地質構造,得到水位與災害等級的頻率分布條形圖如圖()所示.

(I)以此頻率作為概率,試估計黃河濟南段在8月份發(fā)生I級災害的概率;

(Ⅱ)黃河濟南段某企業(yè),在3月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.

現(xiàn)此企業(yè)有如下三種應對方案:

試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),若曲線在點處切線的斜率為.

(Ⅰ)求實數(shù)的值;

(Ⅱ)令,試討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx且g(x)在點(1,g(1))處的切線方程為2y-1=0.

(1)求g(x)的解析式;

(2)設函數(shù)G(x)=若方程G(x)=a2有且僅有四個解求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2002年國際數(shù)學家大會在北京召開,會標是以我國古代數(shù)學家趙爽的弦圖為基礎設計.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖)如果小正方形的邊長為1,大正方形的邊長為5,直角三角形中較小的銳角為,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與圓交于兩點

1求線的垂直平分線的方程;

2,求的值;

32的條件下,求過點的圓的切線方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、 為平面直角坐標系中兩兩不同的點。若,且,則稱點、調和分割點。已知平面上點調和分割點 、.則下面說法正確的是()。

A. 可能是線段的中點

B. 可能是線段 的中點

C. 、 可能同時在線段

D. 、不可能同時在線段的延長線上

查看答案和解析>>

同步練習冊答案