19.函數(shù)y=sin(x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間是(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$],k∈Z
C.[kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$],k∈ZD.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z

分析 利用正弦函數(shù)的增區(qū)間,求得函數(shù)y=sin(x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間.

解答 解:對(duì)于函數(shù)y=sin(x-$\frac{π}{3}$),
令2kπ-$\frac{π}{2}$≤x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得2kπ-$\frac{π}{6}$≤x≤2kπ+$\frac{5π}{6}$,
可得函數(shù)的增區(qū)間為[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z,
故選:D.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.實(shí)數(shù)x,y滿足方程x2+y2-2x=0,則$\frac{y}{x+1}$的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個(gè)數(shù)中數(shù)值最大的是(  )
A.1111(2)B.16C.23(7)D.30(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i是虛數(shù)單位,則i(2-i)的共軛復(fù)數(shù)為(  )
A.1+2iB.-1-2iC.1-2iD.-1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1;
(2)求三棱錐B1-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy內(nèi),變換D1.將每個(gè)點(diǎn)(x,y)沿著與x軸平行的方向平移2y個(gè)單位變成點(diǎn)P′.變換D2將點(diǎn)(x,y)變?yōu)椋▁′,y′),其坐標(biāo)變換公式為$\left\{\begin{array}{l}x'=x\\ y'=2y.\end{array}\right.$
(Ⅰ)寫出D1的坐標(biāo)變換公式及Dl、D2所對(duì)應(yīng)的二階矩陣A、B;
(Ⅱ)求曲線C:x2-4y2=1依次經(jīng)過Dl和D2變換作用后的曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-4x-12)的單調(diào)遞減區(qū)間是(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知菱形ABCD的邊長(zhǎng)為a,∠ABC=60°,則$\overrightarrow{BD}$•$\overrightarrow{CD}$=$\frac{3}{2}{a}^{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案