18.不等式|x-3|+|x+1|<8的解集為(-3,5).

分析 通過分類討論去掉絕對值符號即可解出.

解答 解:①當(dāng)x≥3時,原不等式可化為2x-2<8,解得x<5,又∵x≥3,∴3≤x<5;
②當(dāng)-1<x<3時,原不等式可化為4<8,此式成立,因此-1<x<3;
③當(dāng)x≤-1時,原不等式可化為-2x+2<8,解得x>-3,又∵x≤-1,∴-3<x≤-1.
綜上可知:不等式|x-3|+|x+1|<8的解集為(-3,5).
故答案為(-3,5).

點評 熟練掌握分類討論的思想方法解含絕對值的不等式是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在含有3件次品的100件產(chǎn)品中,任取2件,求:
(Ⅰ)取到的次品數(shù)X的分布列(分布列中的概率值用分?jǐn)?shù)表示,不能含組合符號);
(Ⅱ)至少取到1件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若圓C1:(x-1)2+(y+3)2=1與圓C2:(x-a)2+(y-b)2=1外離,過直線l:x-y-1=0上任意一點P分別做圓C1,C2的切線,切點分別為M,N,且均保持|PM|=|PN|,則a+b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲.乙、丙三人準(zhǔn)備在2017年元旦去自駕游,有A、B兩條線路可以選擇,根據(jù)以往的經(jīng)驗,選擇線路A,旅行中遇到堵車的概率是$\frac{2}{3}$,不堵車的概率是$\frac{1}{3}$,選擇線路B,旅行中遇到堵車的概率是p,不堵車的概率是1-p,若甲、乙兩人選擇線路A,丙選擇線路B.且三人在旅行中是否堵車互不影響.
(1)若三人中恰有一人遇到堵車的概率是$\frac{5}{18}$,求p的值;
(2)在(1)的條件下,求三人中遇到堵車的人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.拋物線y2=8x與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點,且該焦點到雙曲線C的漸近線的距離為1,則雙曲線C的方程為(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{3}$=1C.$\frac{{x}^{2}}{9}$-y2=1D.$\frac{{x}^{2}}{3}$-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是公比不等于1的等比數(shù)列,前n項和為Sn,a11=512,且S8、S7、S9成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=n|an|,數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an},其前n項和為Sn,給出下列命題:
①若{an}是等差數(shù)列,則$({10,\frac{{{S_{10}}}}{10}}),({100,\frac{{{S_{100}}}}{100}}),({110,\frac{{{S_{110}}}}{110}})$三點共線;
②若{an}是等差數(shù)列,則${S_m},{S_{2m}}-{S_m},{S_{3m}}-{S_{2m}}({m∈{N^*}})$;
③若${a_1}=1,{S_{n+1}}=\frac{1}{2}{S_n}+2$,則數(shù)列{an}是等比數(shù)列;
④若${a_{n+1}}^2={a_n}{a_{n+2}}$,則數(shù)列{an}是等比數(shù)列.
其中證明題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a∈R,函數(shù)f(x)=lnx-ax+1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1<x2),求實數(shù)a的取值范圍;
(3)在(2)的條件下,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(m,1),且$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow$)與$\overrightarrow$垂直,求實數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊答案