已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
3
,點P (
3
5
5
,-2)
在此橢圓上,經過橢圓的左焦點F,斜率為K的直線與橢圓交于A,B兩點,O為坐標原點.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)當K=1時,求S△AOB的值.
分析:(Ⅰ)利用離心率為
2
3
,點P (
3
5
5
,-2)
在此橢圓上,建立方程組,求出幾何量,即可求橢圓Γ的標準方程;
(Ⅱ)設出直線方程,代入橢圓方程,利用韋達定理,求出弦長,求出點到直線的距離,即可求S△AOB的值.
解答:解:(Ⅰ)由題意,
c
a
=
2
3
3
5
a2
+
4
b2
=1
a2=b2+c2
,所以a=3,b=
5
,所以橢圓Γ的方程為
x2
9
+
y2
5
=1
;
(Ⅱ)∵K=1,F(xiàn)(-2,0),∴設直線方程為y=x+2,A(x1,y1),B(x2,y2
聯(lián)立方程組
y=x+2
x2
9
+
y2
5
=1
,整理得14x2+36x-9=0,x1+x2=-
18
7
x1x2=-
9
14
,
|AB|=
2
|x1-x2|=
2
(x1+x2)2-4x1x2
=
30
7

設O點到直線AB的距離為d,則d=
|0-0+2|
2
=
2

S△AOB=
1
2
d•|AB|=
1
2
×
2
×
30
7
=
15
2
7
點評:本題考查橢圓的標準方程,考查橢圓的幾何性質,考查三角形面積的計算,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1(-1,0)、F2(1,0),P為橢圓C上任意一點,且cos∠F1PF2的最小值為
1
3

(1)求橢圓C的方程;
(2)動圓x2+y2=t2
2
<t<
3
)與橢圓C相交于A、B、C、D四點,當t為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)
,直線(m+3)x+(1-2m)y-m-3=0(m∈R)恒過的定點F為橢圓的一個焦點,且橢圓上的點到焦點F的最大距離為3,
(1)求橢圓C的方程;
(2)若直線MN為垂直于x軸的動弦,且M、N均在橢圓C上,定點T(4,0),直線MF與直線NT交于點S.求證:
    ①點S恒在橢圓C上;
    ②求△MST面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
,離心率為
1
2
,F(xiàn)1,F(xiàn)2分別為其左右焦點,橢圓上點P到F1與F2距離之和為4,
(1)求橢圓C1方程.
(2)若一動圓過F2且與直線x=-1相切,求動圓圓心軌跡C方程.
(3)在(2)軌跡C上有兩點M,N,橢圓C1上有兩點P,Q,滿足
MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0,求四邊形PMQN面積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0),長軸兩端點A、B,短軸上端頂點為M,點O為坐標原點,F(xiàn)為橢圓的右焦點,且
AF
FB
=1,|OF|=1.
(1)求橢圓方程;
(2)直線l交橢圓于P、Q兩點,問:是否存在直線l,使點F恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
3
,直線l:y=x+2與以原點為圓心,橢圓C1的短半軸長為半徑的圓相切.
(I)求橢圓C1的方程;
(II)直線l1過橢圓C1的左焦點F1,且與x軸垂直,動直線l2垂直于直線l2,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)設C2上的兩個不同點R、S滿足
OR
RS
=0
,求|
OS
|
的取值范圍(O為坐標原點).

查看答案和解析>>

同步練習冊答案