已知橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0),長(zhǎng)軸兩端點(diǎn)A、B,短軸上端頂點(diǎn)為M,點(diǎn)O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),且
AF
FB
=1,|OF|=1.
(1)求橢圓方程;
(2)直線(xiàn)l交橢圓于P、Q兩點(diǎn),問(wèn):是否存在直線(xiàn)l,使點(diǎn)F恰為△PQM的垂心?若存在,求出直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)題意可知c,進(jìn)而根據(jù)
AF
FB
=1求得a,進(jìn)而利用a和c求得b,故可得橢圓的方程;
(2)假設(shè)存在直線(xiàn)l交橢圓于P,Q兩點(diǎn),且F恰為△PQM的垂心,設(shè)出P,Q的坐標(biāo),利用點(diǎn)M,F(xiàn)的坐標(biāo)求得直線(xiàn)PQ的斜率,設(shè)出直線(xiàn)l的方程,與橢圓方程聯(lián)立,由韋達(dá)定理表示出x1+x2和x1x2,進(jìn)而利用
MP
FQ
=0求得m,即可得到直線(xiàn)的方程..
解答:解:(1)由題意知c=1,
AF
FB
=1,
∴(a+c)•(a-c)=1=a2-c2,∴a2=2
故橢圓方程為
x2
2
+y2=1
;
(2)假設(shè)存在直線(xiàn)l交橢圓于P,Q兩點(diǎn),且F恰為△PQM的垂心,則
設(shè)P(x1,y1),Q(x2,y2),∵M(jìn)(0,1),F(xiàn)(1,0),故kPQ=1,
于是設(shè)直線(xiàn)l為y=x+m,與橢圓方程聯(lián)立,消元可得3x2+4mx+2m2-2=0
MP
FQ
=x1(x2-1)+y2(y1-1)=0又yi=xi+m(i=1,2)
得x1(x2-1)+(x2+m)(x1+m-1)=0
即2x1x2+(x1+x2)(m-1)+m2-m=0
由韋達(dá)定理得2•
2m2-2
3
-
4m
3
(m-1)+m2-m=0
解得m=-
4
3
或m=1(舍)
經(jīng)檢驗(yàn)m=-
4
3
符合條件,故直線(xiàn)l方程為y=x-
4
3
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查了直線(xiàn)與圓錐曲線(xiàn)的關(guān)系,考查了學(xué)生綜合運(yùn)用基礎(chǔ)知識(shí)解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知離心率為
6
3
的橢圓C:
x2
a 2
+
y2
b2
=1
(a>b>0)經(jīng)過(guò)點(diǎn)P(
3
,1)

(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線(xiàn)l交橢圓C于M、N兩點(diǎn),若
OM
ON
=
4
6
3tan∠MON
(O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方向向量為
V
=(1,
3
)
的直線(xiàn)l過(guò)橢圓C:
x2
a 2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)以及點(diǎn)(0,-2
3
),直線(xiàn)l與橢圓C交于A(yíng)、B兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為4
6

(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線(xiàn)m交橢圓于M、N兩點(diǎn),
OM
ON
=
4
6
3tan∠MON
≠0
(O坐標(biāo)原點(diǎn)),求直線(xiàn)m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a
+
y2
b
=1(a>b>0)
過(guò)點(diǎn)(1,
3
2
)
,且離心率為
1
2
,A、B是橢圓上縱坐標(biāo)不為零的兩點(diǎn),若
AF
FB
(λ∈R)
,且|
AF
|≠|(zhì)
FB
|
,其中F為橢圓的左焦點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求A、B兩點(diǎn)的對(duì)稱(chēng)直線(xiàn)在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a
+
y2
b
=1(a>b>0)
過(guò)點(diǎn)(1,
3
2
)
,且離心率為
1
2
,A、B是橢圓上縱坐標(biāo)不為零的兩點(diǎn),若
AF
FB
(λ∈R)
,且|
AF
|≠|(zhì)
FB
|
,其中F為橢圓的左焦點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求A、B兩點(diǎn)的對(duì)稱(chēng)直線(xiàn)在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知離心率為
6
3
的橢圓C:
x2
a 2
+
y2
b2
=1
(a>b>0)經(jīng)過(guò)點(diǎn)P(
3
,1)

(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線(xiàn)l交橢圓C于M、N兩點(diǎn),若
OM
ON
=
4
6
3tan∠MON
(O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案