橢圓
x2
m-2
+
y2
m+5
=1
的焦點坐標是
(0,±
7
(0,±
7
分析:橢圓
x2
m-2
+
y2
m+5
=1
中,c2=(m+5)-(m-2)=7,由此能求出橢圓
x2
m-2
+
y2
m+5
=1
的焦點坐標.
解答:解:∵m+5>m-2,
∴橢圓
x2
m-2
+
y2
m+5
=1
中,
c2=(m+5)-(m-2)=7,
∴橢圓
x2
m-2
+
y2
m+5
=1
的焦點坐標是(0,±
7
).
故答案為:(0,±
7
).
點評:本題考查橢圓的簡單性質的應用,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
m+1
+y2=1
的兩個焦點是F1(-c,0),F(xiàn)2(c,0)(c>0),且橢圓上存在點P,使得直線PF1與直線PF2垂直.
(I)求實數(shù)m的取值范圍.
(II)設l是相應于焦點F2的準線,直線PF2與l相交于點Q.若
|QF2|
|PF2|
=2-
3
,求直線PF2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
m+1
+y2=1
的兩個焦點是F1(-c,0),F(xiàn)2(c,0)(c>0).
(1)設E是直線y=x+2與橢圓的一個公共點,求使得|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,-1)設斜率為k(k≠0)的直線l與條件(1)下的橢圓交于不同的兩點A,B,點Q滿足
AQ
=
QB
,且
NQ
AB
=0
,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
m
+y2=1的一個焦點是(2,0),那么m等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)設橢圓
x2
m+1
+y2=1
的兩個焦點是F1(-c,0)、F2(c,0)(c>0),且橢圓上存在點M,使
MF1
MF2
=0

(1)求實數(shù)m的取值范圍;
(2)若直線l:y=x+2與橢圓存在一個公共點E,使得|EF1|+|EF2|取得最小值,求此最小值及此時橢圓的方程;
(3)是否存在斜率為k(k≠0)的直線l,與條件(Ⅱ)下的橢圓交于A、B兩點,使得經過AB的中點Q及N(0,-1)的直線NQ滿足
NQ
AB
=0
?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡模擬 題型:解答題

(理)設橢圓
x2
m+1
+y2=1
的兩個焦點是F1(-c,0)、F2(c,0)(c>0),且橢圓上存在點M,使
MF1
MF2
=0

(1)求實數(shù)m的取值范圍;
(2)若直線l:y=x+2與橢圓存在一個公共點E,使得|EF1|+|EF2|取得最小值,求此最小值及此時橢圓的方程;
(3)是否存在斜率為k(k≠0)的直線l,與條件(Ⅱ)下的橢圓交于A、B兩點,使得經過AB的中點Q及N(0,-1)的直線NQ滿足
NQ
AB
=0
?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案