【題目】奇函數(shù)fx)在R上存在導(dǎo)數(shù),當(dāng)x0時(shí),fx),則使得(x21fx)<0成立的x的取值范圍為(

A.(﹣10)∪(0,1B.(﹣,﹣1)∪(0,1

C.(﹣1,0)∪(1+∞D.(﹣,﹣1)∪(1,+∞

【答案】C

【解析】

根據(jù)當(dāng)x0時(shí),fx)的結(jié)構(gòu)特征,構(gòu)造函數(shù),求導(dǎo)得,由當(dāng)x0時(shí),fx),得上是減函數(shù),再根據(jù)fx)奇函數(shù),則也是奇函數(shù),上也是減函數(shù),又因?yàn)楹瘮?shù)fx)在R上存在導(dǎo)數(shù),

所以函數(shù)fx)是連續(xù)的,所以函數(shù)hx)在R上是減函數(shù),并且同號(hào),將(x21fx)<0轉(zhuǎn)化為求解.

設(shè),

所以

因?yàn)楫?dāng)x0時(shí),fx),

,

所以

所以上是減函數(shù).

又因?yàn)?/span>fx)奇函數(shù),

所以也是奇函數(shù),

所以上也是減函數(shù),

又因?yàn)楹瘮?shù)fx)在R上存在導(dǎo)數(shù)

所以函數(shù)fx)是連續(xù)的,

所以函數(shù)hx)在R上是減函數(shù),并且同號(hào),

所以(x21fx)<0

解得

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)hx)是定義在(﹣2,2)上,滿足h(﹣x)=﹣hx),且x∈(0,2)時(shí),hx)=﹣2x,當(dāng)x∈(﹣2,0)時(shí),不等式[hx+2]2hxm1恒成立,則實(shí)數(shù)m的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.

1)求證:四邊形為矩形;

2)若平面平面,,,求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x3(a>0a≠1)

(1)求函數(shù)f(x)的定義域;

(2)討論函數(shù)f(x)的奇偶性;

(3)a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是實(shí)數(shù).

1)當(dāng)時(shí),求證:在定義域內(nèi)是增函數(shù);

2)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxax+1aR).

1)求fx)的單調(diào)區(qū)間;

2)設(shè)gx)=lnx,若對(duì)任意的x1∈(0,+∞),存在x2∈(1,+∞),使得fx1)<gx2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為;

(1)求橢圓的方程;

(2)過作垂直于軸的直線交橢圓兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列,

1)求數(shù)列的通項(xiàng)公式;

2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.

3)設(shè)數(shù)列的前n項(xiàng)和為,求證:對(duì)任意正整數(shù)n,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)

A. 0.236B. 0.382C. 0.472D. 0.618

查看答案和解析>>

同步練習(xí)冊(cè)答案