【題目】奇函數(shù)f(x)在R上存在導(dǎo)數(shù),當(dāng)x<0時(shí),f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
【答案】C
【解析】
根據(jù)當(dāng)x<0時(shí),f(x)的結(jié)構(gòu)特征,構(gòu)造函數(shù),求導(dǎo)得,由當(dāng)x<0時(shí),f(x),得在上是減函數(shù),再根據(jù)f(x)奇函數(shù),則也是奇函數(shù),在上也是減函數(shù),又因?yàn)楹瘮?shù)f(x)在R上存在導(dǎo)數(shù),
所以函數(shù)f(x)是連續(xù)的,所以函數(shù)h(x)在R上是減函數(shù),并且與同號(hào),將(x2﹣1)f(x)<0轉(zhuǎn)化為求解.
設(shè),
所以,
因?yàn)楫?dāng)x<0時(shí),f(x),
即,
所以,
所以在上是減函數(shù).
又因?yàn)?/span>f(x)奇函數(shù),
所以也是奇函數(shù),
所以在上也是減函數(shù),
又因?yàn)楹瘮?shù)f(x)在R上存在導(dǎo)數(shù),
所以函數(shù)f(x)是連續(xù)的,
所以函數(shù)h(x)在R上是減函數(shù),并且與同號(hào),
所以(x2﹣1)f(x)<0或
解得或
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)是定義在(﹣2,2)上,滿足h(﹣x)=﹣h(x),且x∈(0,2)時(shí),h(x)=﹣2x,當(dāng)x∈(﹣2,0)時(shí),不等式[h(x)+2]2>h(x)m﹣1恒成立,則實(shí)數(shù)m的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是實(shí)數(shù).
(1)當(dāng)時(shí),求證:在定義域內(nèi)是增函數(shù);
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+1(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=lnx,若對(duì)任意的x1∈(0,+∞),存在x2∈(1,+∞),使得f(x1)<g(x2)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.
(3)設(shè)數(shù)列的前n項(xiàng)和為,求證:對(duì)任意正整數(shù)n,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com