(江蘇卷23)請(qǐng)先閱讀:在等式()的兩邊求導(dǎo),得:
,由求導(dǎo)法則,得,化簡(jiǎn)得等式:.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=(,正整數(shù)),證明:=.
(2)對(duì)于正整數(shù),求證:(i)=0;
(ii)=0;
(iii).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 2 n |
C | 3 n |
C | 4 n |
C | n n |
C | 1 n |
C | 2 n |
C | 3 n |
C | n n |
C | 2 n |
C | 3 n |
C | 4 n |
C | n n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年江蘇卷)【必做題】.請(qǐng)先閱讀:
在等式()的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡(jiǎn)得等式:.
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:.
(2)對(duì)于正整數(shù),求證:
(i); (ii);查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年江蘇卷)【必做題】.請(qǐng)先閱讀:
在等式()的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡(jiǎn)得等式:.
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:.
(2)對(duì)于正整數(shù),求證:
(i); (ii); (iii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(江蘇卷23)請(qǐng)先閱讀:在等式()的兩邊求導(dǎo),得:
,由求導(dǎo)法則,得,化簡(jiǎn)得等式:.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=(,正整數(shù)),證明:=.
(2)對(duì)于正整數(shù),求證:(i)=0;
(ii)=0;
(iii).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com