已知函數(shù)f(x)=x3-x2-x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)P(-1,f(-1))處的切線方程.
分析:(1)先求函數(shù)的導(dǎo)數(shù),然后利用f′(x)>0,或f′(x)<0,求出單調(diào)區(qū)間.
(2)利用導(dǎo)數(shù)先求f′(-1),即切線的斜率k=f′(-1),代入點(diǎn)斜式方程,即可求出對(duì)應(yīng)的切線方程.
解答:(本小題滿分14分)
解:(1)函數(shù)f(x)的定義域?yàn)椋?∞,+∞).(1分)f′(x)=3x2-2x-1=3(x+
1
3
)(x-1)
.(4分)
當(dāng)x∈(-∞,-
1
3
)
時(shí),f'(x)>0,此時(shí)f(x)單調(diào)遞增;                   (5分)
當(dāng)x∈(-
1
3
,1)
時(shí),f'(x)<0,此時(shí)f(x)單調(diào)遞減;                     (6分)
當(dāng)x∈(1,+∞)時(shí),f'(x)>0,此時(shí)f(x)單調(diào)遞增.(7分)
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-
1
3
)
與(1,+∞),單調(diào)減區(qū)間為(-
1
3
,1)
.(9分)
(2)因?yàn)閒(-1)=(-1)3-(-1)2+1=-1,(10分)f'(-1)=3×(-1)2-2×(-1)-1=4,(12分)
所以所求切線方程為y+1=4(x+1),即y=4x+3.(14分)
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及利用導(dǎo)數(shù)的幾何意義求切線方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案