設(shè)對所有實數(shù)x,不等式恒成立,求a的取值范圍.

答案:
解析:

  

  解法二:將原不等式化為

  

  即

  所以

  因為,且x2-2x+2=(x-1)2+1≥1,欲使原不等式對x∈R恒成立,必須,解得0<a<1.

  思想方法小結(jié):有些數(shù)學(xué)問題構(gòu)思新穎,同是有其實際背景,按固有的習(xí)慣思維,把注意力集中在某些醒目的“主元”上,往往陷入困境.如果打破思維定勢,反“客”為“主”,把原來處于相對次要地位的“客元”突出出來,常常能收到出人意料的效果.


提示:

  思路分析一:可利用代換將問題轉(zhuǎn)化為一元二次不等式的問題.

  思路分析二:本題是關(guān)于x為“主元”的一元二次不等式,常規(guī)思路是由“△<0”,列出不等式組進(jìn)行求解如解法1,但形式復(fù)雜,運算冗繁,令人望而生畏,往往半途而廢.若反客為主,視為關(guān)于a為主元的對數(shù)不等式,則是另一番情景.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:新課標(biāo)教材全解高中數(shù)學(xué)人教A版必修1 人教A版 題型:038

設(shè)對所有實數(shù)x,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第5章 不等式):5.8 指、對數(shù)不等式解法(解析版) 題型:解答題

設(shè)對所有實數(shù)x,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1987年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)對所有實數(shù)x,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1987年全國統(tǒng)一高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)對所有實數(shù)x,不等式恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案