【題目】2019年10月1日為慶祝中國人民共和國成立70周年在北京天安門廣場舉行了盛大的閱兵儀式,共有580臺(套)裝備、160余架各型飛機接受檢閱,受閱裝備均為中國國產(chǎn)現(xiàn)役主戰(zhàn)裝備,其中包括部分首次公開亮相的新型裝備.例如,在無人作戰(zhàn)第三方隊中就包括了兩型偵察干擾無人機,可以在遙控設(shè)備或自備程序控制操縱的情況下執(zhí)行任務,進行對敵方通訊設(shè)施的電磁壓制和干擾,甚至壓制敵人的防空系統(tǒng).某作戰(zhàn)部門對某處的戰(zhàn)場實施“電磁干擾”實驗,據(jù)測定,該處的“干擾指數(shù)”與無人機干擾源的強度和距離之比成正比,比例系數(shù)為常數(shù)(),現(xiàn)已知相距36的、兩處配置兩架無人機干擾源,其對敵干擾的強度分別為1和(),它們連線段上任意一點處的干擾指數(shù)等于兩機對該處的干擾指數(shù)之和,設(shè)().
(1)試將表示為的函數(shù),指出其定義域;
(2)當,時,試確定“干擾指數(shù)”最小時所處位置.
科目:高中數(shù)學 來源: 題型:
【題目】已知(, )展開式的前三項的二項式系數(shù)之和為16,所有項的系數(shù)之和為1.
(1)求和的值;
(2)展開式中是否存在常數(shù)項?若有,求出常數(shù)項;若沒有,請說明理由;
(3)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間滿足的關(guān)系式為:,請結(jié)合(1)中的線性回歸方程,估算該公司應在A區(qū)開設(shè)多少個分店,才能使A區(qū)平均每個分店的年利潤最大?
附:回歸方程中的斜率和截距的最小二乘估計公式分別為:
, .
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地級市共有200000中小學生,其中有7%學生在2017年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為5:3:2,為進一步幫助這些學生,當?shù)厥姓O(shè)立“專項教育基金”,對這三個等次的困難學生每年每人分別補助1000元、1500元、2000元。經(jīng)濟學家調(diào)查發(fā)現(xiàn),當?shù)厝司芍淠晔杖胼^上一年每增加n%,一般困難的學生中有3n%會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學生中有2n%轉(zhuǎn)為一般困難,特別困難的學生中有n%轉(zhuǎn)為很困難,F(xiàn)統(tǒng)計了該地級市2013年到2017年共5年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份取13時代表2013年, 與(萬元)近似滿足關(guān)系式,其中為常數(shù)。(2013年至2019年該市中學生人數(shù)大致保持不變)
其中,
(Ⅰ)估計該市2018年人均可支配年收入;
(Ⅱ)求該市2018年的“專項教育基金”的財政預算大約為多少?
附:①對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線方程
的斜率和截距的最小二乘估計分別為
②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.若將函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,則g(x)在下列區(qū)間上是減函數(shù)的是( )
A. B. [0,π]
C. [2π,3π] D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為, ,離心率為, 是橢圓上的動點,當時, 的面積為.
(1)求橢圓的標準方程;
(2)若過點的直線交橢圓于, 兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一個元素,試求a的值,并求出這個元素;
(2)若A是空集,求a的取值范圍;
(3)若A中至多有一個元素,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月27日當今世界圍棋排名第一的柯潔在與的人機大戰(zhàn)中中盤棄子認輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負,這次人機大戰(zhàn)再次引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名學生中的“圍棋迷”人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列,數(shù)學期望和方差.
獨立性檢查臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,以坐標原點為極點,軸非負半軸為極軸建立極坐標系,點為曲線上的動點,點在線段 的延長線上,且滿足,點的軌跡為.
(1)求曲線,的極坐標方程;
(2)設(shè)點的極坐標為,求面積的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com