已知函數(shù)f(x)=x(x+a)-
1
2
lnx.
(1)若a=0,討論函數(shù)f(x)的單調性;
(2)求函數(shù)f(x)的極值點.
考點:利用導數(shù)研究函數(shù)的極值,利用導數(shù)研究函數(shù)的單調性
專題:計算題,導數(shù)的綜合應用
分析:(1)求出a=0時的函數(shù)的導數(shù),求出單調區(qū)間,注意定義域;
(2)求出函數(shù)的導數(shù),令g(x)=4x2+2ax-1,通過求根公式,求出兩根,再令導數(shù)大于0,得增區(qū)間,令導數(shù)小于0,得減區(qū)間,進而得到極值點.
解答: 解:(1)a=0時,f(x)=x2-
1
2
lnx,(x>0),
f′(x)=2x-
1
2x
=
(2x-1)(2x+1)
2x

令f′(x)>0,得x>
1
2
,令f′(x)<0,得0<x<
1
2
,
即有f(x)的增區(qū)間為(
1
2
,+∞),減區(qū)間為(0,
1
2
);
(2)函數(shù)f(x)=x(x+a)-
1
2
lnx的導數(shù)為f′(x)=2x+a-
1
2x

=
4x2+2ax-1
2x
,(x>0),令g(x)=4x2+2ax-1,
由于判別式△=4a2+16>0,則g(x)=0有兩個不等的實數(shù)根,且為一正一負,
令x1=
-a+
a2+4
4
,x2=
-a-
a2+4
4
,可得x1>0,x2<0,
令f′(x)>0,解得,x>x1,令f′(x)<0,解得,0<x<x1
則f(x)在x=x1=
-a+
a2+4
4
處導數(shù)左負右正,取得極小值,無極大值點.
點評:本題考查導數(shù)的運用:求單調區(qū)間和求極值,考查運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知角α是第一象限的角,且cosα=
5
5

(1)求sinα和tanα的值;
(2)求sin(α+
π
6
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|x+1|,x≤0
|log2x|,x>0
,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x3(x1+x2)+
1
x
2
3
x4
的取值范圍是( 。
A、(-1,+∞)
B、(-1,1]
C、(-∞,1)
D、[-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2-4x+lg(6a2-a)=0有一正一負兩根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式a2+mb2≥λb(a+b)對于任意的a,b∈R,存在λ∈R成立,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(6,-3),B(-3,5),C(x,y),若
AC
=2
BC
,則點C的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,收集數(shù)據(jù)如下:
實驗順序第一次第二次第三次第四次第五次
零件數(shù)x(個)1020304050
加工時間y(分鐘)6267758089
(Ⅰ)在5次試驗中任取2次,記加工時間分別為a,b,求事件:加工時間a,b均小于80分鐘的概率;
(Ⅱ)請根據(jù)第二次、第三次、第四次試驗的數(shù)據(jù),求出y關于x的線性回歸方程
y
=
b
x+
a
,參考公式如下:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,
a
=
.
y
-
b
.
x
.
x
=
x1+x2+…+xn
n
,
.
y
=
y1+y2+…+yn
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A、B、C、D是空間不共面的四點,且滿足AB⊥AC,AB⊥AD,AC⊥AD,則△BCD是( 。
A、鈍角三角形B、直角三角形
C、銳角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
不共線,試判斷
a
+
b
a
-
b
是否共線?

查看答案和解析>>

同步練習冊答案