已知A(6,-3),B(-3,5),C(x,y),若
AC
=2
BC
,則點C的坐標為
 
考點:平面向量的坐標運算
專題:平面向量及應用
分析:利用向量線性運算即可得出.
解答: 解:
AC
=(x-6,y+3),
BC
=(x+3,y-5).
AC
=2
BC
,
∴(x-6,y+3)=2(x+3,y-5).
x-6=2(x+3)
y+3=2(y-5)

解得x=-12,y=13.
∴C(-12,13).
故答案為:(-12,13).
點評:本題查克拉向量的線性運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若P為△ABC內一點,且
PB
+
PC
+2
PA
=
0
,S△PBC:S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
25
+
y2
18
=1
的左右焦點為F1,F(xiàn)2,點P在橢圓上,且|PF1|=6,則△F1PF2的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程(x+y)2+(xy+4)2=0表示的曲線是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x+a)-
1
2
lnx.
(1)若a=0,討論函數(shù)f(x)的單調性;
(2)求函數(shù)f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某服裝店老板上午進了50件襯衫,價格為每件m元,下午又進了30件同樣的襯衫,價格為每件n元(n>m),后來由于市場變化老板以每件
(m+n)
2
元的價格賣光這批襯衫,請問老板盈利了,還是虧本了?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的漸近線方程是2x±y=0,并且過點M(
3
,-4).
(1)求該雙曲線的方程;
(2)求該雙曲線的頂點、焦點、離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD中,連接AC、BD,△BCD的重心為G,化簡
AB
+
1
2
BC
-
3
2
DG
-
AD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
=(cos(
π
3
+x),0),
n
=(cos(
π
3
-x),2),函數(shù)f(x)=
m
n
,g(x)=
1
2
sin2x-
1
4

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

同步練習冊答案