A. | (2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$) | B. | (2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$) | C. | (2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$) | D. | (2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$) |
分析 根據(jù)球坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系列方程組求出.
解答 解:設(shè)M的球坐標(biāo)為M(r,φ,θ),
則r=$\sqrt{3+1+4}$=2$\sqrt{2}$,
2$\sqrt{2}$cosφ=-2,∴φ=$\frac{3π}{4}$,
2$\sqrt{2}$sinφsinθ=1,∴θ=$\frac{π}{6}$,
∴M的球坐標(biāo)為(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$).
故選A.
點評 本題考查了球坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{h}$=$\frac{1}{PA}$+$\frac{1}{PB}$+$\frac{1}{PC}$ | B. | $\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$ | ||
C. | $\frac{1}{{h}^{3}}$=$\frac{1}{P{A}^{3}}$+$\frac{1}{P{B}^{3}}$+$\frac{1}{P{C}^{3}}$ | D. | $\frac{1}{{h}^{4}}$=$\frac{1}{P{A}^{4}}$+$\frac{1}{P{B}^{4}}$+$\frac{1}{P{C}^{4}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)學(xué)成績優(yōu)秀(人) | 數(shù)學(xué)成績不優(yōu)秀(人) | 合計 | |
物理成績優(yōu)秀(人) | a=5 | b=2 | a+b=7 |
物理成績不優(yōu)秀(人) | c=1 | d=12 | c+d=13 |
合計 | a+c=6 | b+d=14 | n=a+b+c+d=20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com