11.一質(zhì)點(diǎn)按規(guī)律s=2t3運(yùn)動(dòng),則在t=2時(shí)的瞬時(shí)速度為24.

分析 求質(zhì)點(diǎn)在t=2時(shí)的瞬時(shí)速度,可以求出位移的導(dǎo)數(shù),再將t=2代入既得;

解答 解:s=2t3,
s′=6t2,
在t=2時(shí)的瞬時(shí)速度為6×4=24.
故答案為:24.

點(diǎn)評(píng) 題考查的知識(shí)點(diǎn)是變化的快慢與變化率,其中根據(jù)質(zhì)點(diǎn)位移與時(shí)間的關(guān)系時(shí),求導(dǎo)得到質(zhì)點(diǎn)瞬時(shí)速度的表達(dá)式是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,一個(gè)半圓和長(zhǎng)方形組成的鐵皮,長(zhǎng)方形的邊AD為半圓的直徑,O為半圓的圓心,AB=2,BC=4,現(xiàn)要將此鐵皮剪出一個(gè)△PMN,其中邊MN⊥BC,點(diǎn)P在曲線MAB上運(yùn)動(dòng).
(1)設(shè)∠MOD=30°,若PM=PN,求△PMN的面積;
(2)求剪下的鐵皮△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若a>b>c,則下列不等式中正確的是( 。
A.ac>bcB.a-b>b-cC.a-c>b-cD.a+c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.執(zhí)行如圖所示的程序框圖,則輸出的T值等于30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為響應(yīng)國(guó)家擴(kuò)大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)x萬(wàn)件與年促銷費(fèi)用t(t≥0)萬(wàn)元滿足x=4-$\frac{k}{2t+1}$(k為常數(shù)).如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬(wàn)件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入12萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均生產(chǎn)投入成本的1.5倍(生產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù)k,并將該廠家2016年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷費(fèi)用t萬(wàn)元的函數(shù);
(2)該廠家2016年的年促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)是在定義域內(nèi)最小正周期為π的奇函數(shù),且在區(qū)間(0,$\frac{π}{2}$)是減函數(shù),那么函數(shù)f(x)可能是( 。
A.f(x)=sin2xB.f(x)=2tan$\frac{1}{2}$xC.f(x)=-tanxD.f(x)=sin($\frac{π}{2}$+2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是( 。
A.f(x)=2sin$\frac{1}{2}$xB.f(x)=2cos2$\frac{1}{4}$xC.f(x)=2cos2$\frac{1}{2}$xD.f(x)=2cos$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線l1:(m+3)x+(m-1)y-5=0與l2:(m-1)x+(3m+9)y-1=互相垂直,則實(shí)數(shù)m的值為1或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cosA=$\frac{4}{5}$,b=5c.
(1)求sinC;
(2)若△ABC的面積S=$\frac{3}{2}$sinBsinC,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案