(12分)已知滿足,求函數(shù)的最大值和最小值

解析試題分析:由可得,                                       ……4分
所以
=,                                      ……8分
時,,                                                 ……10分
時,.                                                     ……12分
考點:本小題主要考查函數(shù)的值域.
點評:本小題實際是利用換元法求解函數(shù)的值域,換元前后要注意變量是否發(fā)生了變化.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),。
(1)當時,求的單調(diào)區(qū)間;
(2)(i)設的導函數(shù),證明:當時,在上恰有一個使得;
(ii)求實數(shù)的取值范圍,使得對任意的,恒有成立。
注:為自然對數(shù)的底數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中e是自然數(shù)的底數(shù),
(1)當時,解不等式;
(2)當時,求正整數(shù)k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當時,討論的單調(diào)性;
(Ⅱ)設時,若對任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)。
求(1)的值域;
(2)記的內(nèi)角A、B、C的對邊長分別為a,b,c,若=1,b=1,c=,求a的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù),其中.(1) 討論函數(shù)的單調(diào)性,并求出的極值;(2) 若對于任意,都存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
為實數(shù),且
(1)求方程的解;
(2)若,滿足,試寫出的等量關系(至少寫出兩個);
(3)在(2)的基礎上,證明在這一關系中存在滿足.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù)
(1)求的值;
(2)當時,求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù)
(Ⅰ) 當時,求函數(shù)的最大值;
(Ⅱ)當,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

同步練習冊答案