【題目】如圖,已知三棱柱的底面是邊長為2的正三角形,側(cè)棱與下底面相鄰的兩邊AB,AC均成45度的角.

(1)求點到平面B1BCC1的距離.

(2)試問,當(dāng)為多長時,到平面與到平面的距離相等.

【答案】(1) (2)

【解析】

設(shè)BC,B1C1中點為D,D1.

(1) 因為側(cè)棱與下底面相鄰的兩邊AB,AC均成45度的角,所以點在底面的投影O在∠BAC角平分線AD上,由三垂線定理得側(cè)棱垂直BC,所以過點DD1垂線于E點,則為點到平面B1BCC1的距離.

由三余弦定理得cos∠BACcos300=cos450, cos∠BAC=,

從而點到平面B1BCC1的距離為A1D1sin∠BAC=,

(2)因為點到平面與到平面的距離相等,所以A1A=A1D1= .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機(jī)構(gòu)針對該市市場占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經(jīng)營情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:

1日

2日

3日

4日

5日

外賣甲日接單(百單)

5

2

9

8

11

外賣乙日接單(百單)

2.2

2.3

10

5

15

(1)據(jù)統(tǒng)計表明,之間具有線性相關(guān)關(guān)系.

(。┱堄孟嚓P(guān)系數(shù)加以說明:(若,則可認(rèn)為有較強(qiáng)的線性相關(guān)關(guān)系(值精確到0.001))

(ⅱ)經(jīng)計算求得之間的回歸方程為.假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測當(dāng)外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)

(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.

相關(guān)公式:相關(guān)系數(shù),

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直. ,,.

(1)求證:

(2)求證:平面平面;

(3)線段上是否存在點,使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)有12個點,其中任意三點不共線,每兩點連一條線段(或邊)。這些線段用紅、藍(lán)兩色染色,每條線段恰染一色,其中,從某點出發(fā)的紅色線段有奇數(shù)條,而從其余11個點出發(fā)的紅色線段數(shù)互不相同。求以已知點為頂點、各邊均為紅色的三角形個數(shù)及兩邊為紅色、另一邊為藍(lán)色的三角形個數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線方程為.

1)求函數(shù)的解析式;

2)若對任意,不等式恒成立,求正整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級:050為優(yōu);51100為良;101150為輕度污染;151200為中度污染;201300為重度污染;>300為嚴(yán)重污染.一環(huán)保人士記錄了某地2020年某月10天的AQI的莖葉圖如圖所示.

1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共有30天計算)

2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天中,隨機(jī)地抽取兩天深入分析各種污染指標(biāo),求該兩天的空氣質(zhì)量等級恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是的導(dǎo)函數(shù)的圖象,對于下列四個判斷,其中正確的判斷是( .

A.上是增函數(shù);

B.當(dāng)時,取得極小值;

C.上是增函數(shù)、在上是減函數(shù);

D.當(dāng)時,取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有,兩個分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項質(zhì)量指標(biāo)值不低于130的為優(yōu)質(zhì)品.分別從兩廠中各隨機(jī)抽取100件產(chǎn)品統(tǒng)計其質(zhì)量指標(biāo)值,得到如圖頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標(biāo)值的眾數(shù)和中位數(shù)的估計值;

(2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為這兩個分廠的產(chǎn)品質(zhì)量有差異?

優(yōu)質(zhì)品

非優(yōu)質(zhì)品

合計

合計

(3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再從這10件產(chǎn)品中隨機(jī)抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;

(ii)將頻率視為概率,從分廠中隨機(jī)抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學(xué)期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近日,據(jù)媒體報道稱,“雜交水稻之父”袁隆平及其團(tuán)隊培育的超級雜交稻品種“湘兩優(yōu)900(超優(yōu)千號)”再創(chuàng)畝產(chǎn)世界紀(jì)錄,經(jīng)第三方專家測產(chǎn),該品種的水稻在實驗田內(nèi)畝產(chǎn)1203.36公斤.中國工程院院士袁隆平在1973年率領(lǐng)科研團(tuán)隊開啟了的雜交水稻王國的大門,在數(shù)年的時間內(nèi)就解決了十多億人的吃飯問題,有力回答了世界“誰來養(yǎng)活中國”的疑問.2012年,在袁隆平的實驗田內(nèi)種植了兩個品種的水稻,為了篩選出更優(yōu)的品種,在,兩個品種的實驗田中分別抽取7塊實驗田,如圖所示的莖葉圖記錄了這14塊實驗田的畝產(chǎn)量(單位:),通過莖葉圖比較兩個品種的均值及方差,并從中挑選一個品種進(jìn)行以后的推廣,有如下結(jié)論:①.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;

其中正確結(jié)論的編號為( )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

同步練習(xí)冊答案