已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,,,且
(1)求角B的大;
(2)求的取值范圍.
解:(1)∵
,得
由正弦定理,得a=2RsinA,b=2RsinB,
代入得:sinA﹣2sinBsinA=0,sinA≠0,

因為B為鈍角,
所以角
(2)∵,
由(1)知
,
的取值范圍是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,
m
=(a,2b),
n
=(
3
,-sinA)
,且
m
n

(1)求角B的大;
(2)求cosA+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,
m
=(a,  2b)
,
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大;
(2)求sinA+
3
cosA
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,
m
=(a,  2b)
,
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大;
(2)求sinA-
3
cosC
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,
m
=(a,  2b)
n
=(1,  -sinA)
,且
m
n

(1)求角B的大。
(2)求sinA+cosC的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案