【題目】設(shè)為數(shù)列前項(xiàng)的和,,數(shù)列的通項(xiàng)公式.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,則稱為數(shù)列與的公共項(xiàng),將數(shù)列與的公共項(xiàng),按它們?cè)谠瓟?shù)列中的先后順序排成一個(gè)新數(shù)列,求的值;
(3)是否存在正整數(shù)、、使得成立,若存在,求出、、;若不存在,說明理由.
【答案】(1);(2),數(shù)列和的值為;(3)存在,,,.
【解析】
(1)根據(jù),得時(shí),,兩式相減得到,再求出時(shí),的值,利用等比數(shù)列通項(xiàng)公式,得到答案;(2)根據(jù),可得,,,,求出的通項(xiàng),根據(jù)無窮等比數(shù)列的求和公式,即可求出答案;(3)假設(shè)存在整數(shù)、、使得成立,從而得到,根據(jù)等式兩邊的奇偶,得到,進(jìn)而得到和的值.
(1)因?yàn)?/span>,
所以當(dāng)時(shí),,
兩式相減,得到,
即
時(shí),,解得
所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,
所以.
(2),.
可得,,,
所以得到
所以
所以
.
(3)假設(shè)存在整數(shù)、、使得成立,
則
即
即
等式右邊為奇數(shù),要使等式成立,則左邊也要為奇數(shù)
又因,所以只能有,
故
可得
即
等式右邊為奇數(shù),要使等式成立,則左邊也要為奇數(shù)
又因,所以只能有
故
可得,所以
所以只存在一組正整數(shù)、、,使得成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我們的教材必修一中有這樣一個(gè)問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)元;
方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;
方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.
記三種方案第天的回報(bào)分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;
(2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個(gè)容量為m的樣本,用分層抽樣的方法進(jìn)行抽樣調(diào)查,樣本中的中年人為6人,則n和m的值不可以是下列四個(gè)選項(xiàng)中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,、分別是橢圓的左、右焦點(diǎn),其離心率橢圓右焦點(diǎn)的直線與橢圓交于、兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn)、,求實(shí)數(shù)的取值范圍;
(3)在(1)的基礎(chǔ)上,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:
古文迷 | 非古文迷 | 合計(jì) | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認(rèn)為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校教務(wù)處對(duì)學(xué)生學(xué)習(xí)的情況進(jìn)行調(diào)研,其中一項(xiàng)是:對(duì)“學(xué)習(xí)數(shù)學(xué)”的態(tài)度是否與性別有關(guān),可見隨機(jī)抽取了30名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下聯(lián)表:
男生 | 女生 | 合計(jì) | |
喜歡 | 10 | ||
不喜歡 | 8 | ||
合計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人,抽到喜歡“學(xué)習(xí)數(shù)學(xué)”的學(xué)生的概率是.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程);
(2)若從喜歡“學(xué)習(xí)數(shù)學(xué)”的女生中抽取2人進(jìn)行調(diào)研,其中女生甲被抽到的概率為多少?(要寫求解過程)
(3)試判斷是否有95%的把握認(rèn)為喜歡“學(xué)習(xí)數(shù)學(xué)”與性別有關(guān)?
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com