【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥BD,底面ABCD是邊長(zhǎng)為a的菱形,∠BAD=120°,PA=b,AC與BD交于點(diǎn)O,M為OC的中點(diǎn).
(1)求證:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值為 ,求a:b的值.
【答案】
(1)證明:因?yàn)榈酌鍭BCD是菱形,所以AC⊥BD,
又PA⊥BD,PA∩AC=A,
所以BD⊥面PAC,
又因?yàn)?PD面ABCD,
所以 平面PAC⊥平面ABCD
(2)解:由∠PAC=90°可知PA⊥AC,
又由(1)可知平面PAC⊥平面ABCD
平面PAC∩平面ABCD=AC,
所以 PA⊥平面ABCD,
故如圖,
以A為坐標(biāo)原點(diǎn),AD,AP所在直線分別為y,z軸建立空間直角坐標(biāo)系,
則P(0,0,b),D(0,a,0),M( , ,0),O( , ,0)
從而 =(0,a,﹣b), =( a, ,﹣b),
=(﹣ , ,0),
因?yàn)锽D⊥面PAC,所以平面PMO的一個(gè)法向量為 =(﹣ , ,0),
設(shè)平面PMD的法向量為 =(x,y,z),
由 , ,得
,
令y=b,得x= ,z=a,即 ,
設(shè) 與 的夾角為θ,則二面角O﹣PM﹣D的大小與θ相等,
由 ,得
化簡(jiǎn)得 4b=3a,即a:b=4:3
【解析】(1)推導(dǎo)出AC⊥BD,PA⊥BD,由此能證明平面PAC⊥平面ABCD.(2)以A為坐標(biāo)原點(diǎn),AD,AP所在直線分別為y,z軸建立空間直角坐標(biāo)系,利用利用向量法能求出a:b的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教育部記錄了某省2008到2017年十年間每年自主招生錄取的人數(shù)為方便計(jì)算,2008年編號(hào)為1,2009年編號(hào)為2,,2017年編號(hào)為10,以此類推數(shù)據(jù)如下:
年份編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 3 | 5 | 8 | 11 | 13 | 14 | 17 | 22 | 30 | 31 |
Ⅰ根據(jù)前5年的數(shù)據(jù),利用最小二乘法求出y關(guān)于x的回歸方程,并計(jì)算第8年的估計(jì)值和實(shí)際值之間的差的絕對(duì)值;
Ⅱ根據(jù)Ⅰ所得到的回歸方程預(yù)測(cè)2018年該省自主招生錄取的人數(shù).
其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為彼此不重合的三個(gè)平面,為直線,給出下列結(jié)論:
①若 ,則 ②若,且 則
③若直線與平面內(nèi)的無數(shù)條直線垂直,則
④若內(nèi)存在不共線的三點(diǎn)到的距離相等,則
上面結(jié)論中,正確的序號(hào)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為O,點(diǎn)A的極坐標(biāo)為(2, ),以O(shè)A為斜邊作等腰直角三角形OAB(其中O,A,B按逆時(shí)針方向分布)
(1)求點(diǎn)B的極坐標(biāo);
(2)求三角形外接圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù)對(duì)任意的、,都有成立,且當(dāng)時(shí),.
(1)求證:是R上的增函數(shù);
(2)若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知向量 =(2a,1), =(2b﹣c,cosC),且 ∥ .
(Ⅰ)求角A的大。
(Ⅱ)若 ,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿足xf′(x)>f(x),則不等式(x﹣1)f(x+1)>f(x2﹣1)的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x=1是 的一個(gè)極值點(diǎn).
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù) ,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com