(本大題18分)

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an–1+2,求數(shù)列的通項an

解:令an=an–1=x,則有x=3x+2,所以x= –1,故原遞推式an=3an–1+2可轉化為:

an+1=3(an–1+1),因此數(shù)列{an+1}是首項為a1+1,公比為3的等比數(shù)列。

根據(jù)上述材料所給出提示,解答下列問題:

已知數(shù)列{an},a1=1,an=3an–1+4,

(1)求數(shù)列的通項an;并用解析幾何中的有關思想方法來解釋其原理;

(2)若記Sn=,求Sn;

(3)若數(shù)列{bn}滿足:b1=10,bn+1=100,利用所學過的知識,把問題轉化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項公式bn

(1) 令an=an–1=x,則有x=3x+4,所以x= –2,故原遞推式an=3an–1+4可轉化為:

an+2=3(an–1+2),因此數(shù)列{an+2}是首項為a1+2,公比為3的等比數(shù)列。

所以an+2=(a1+2)´3n–1,所以an=3n–2;…………………………………………2分

對于an=3an–1+4,可以看成把直線y=3x+4的方程改寫成點斜式方程,

該點就是它與直線y=x的交點!4分

(2)令dk==

=(2=(2)……………………………7分

Sn==d1+d2+……+dn

=(2[()+()+()+……+()]

=(2[]………………………………………………………………10分

Sn=(2……………………………………………………………………12分

(3)數(shù)列{bn}滿足:b1=10,bn+i=100,所以bn>0,lg bn+i =lg(100

令cn=lgbn,則cn+1=3cn+2,………………………………………………………14分

所以cn+2=3(cn–1+2),因此數(shù)列{cn+2}是首項為c1+2,公比為3的等比數(shù)列。

所以cn+2=(c1+2)´3n–1,所以cn=3n–2,…………………………………………16分

lg bn=cn=3n–2;bn=…………………………………………………………18分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本大題12分)已知向量,且

 。1)求的取值范圍;

 。2)求函數(shù)的最小值,并求此時x的值

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省實驗中學高二下學期期中考試數(shù)學(文) 題型:解答題

(本大題12分)己知下列三個方程,,
至少有一個方程有實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年大綱版高三上學期單元測試(1)數(shù)學試卷 題型:解答題

(本大題12分)用反證法證明:若,且

,,則中至少有一個不小于0.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本大題18分)

(1)已知平面上兩定點,且動點M標滿足=0,求動點的軌跡方程;

(2)若把(1)的M的軌跡圖像向右平移一個單位,再向下平移一個單位,恰與直線x+ky–3=0 相切,試求實數(shù)k的值;

(3)如圖,l是經(jīng)過橢圓長軸頂點A且與長軸垂直的直線,E.F是兩個焦點,點PÎl,P不與A重合。若ÐEPF=,求的取值范圍。

并將此題類比到雙曲線:,是經(jīng)過焦點且與實軸垂直的直線,是兩個頂點,點PÎl,P不與重合,請作出其圖像。若,寫出角的取值范圍。(不需要解題過程)

查看答案和解析>>

同步練習冊答案