14.已知$\frac{cosα}{1+sinα}=\sqrt{3}$,則$\frac{cosα}{sinα-1}$的值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

分析 利用同角三角函數(shù)基本關(guān)系式,化簡求解即可.

解答 解:$\frac{cosα}{1+sinα}=\sqrt{3}$,
又$\frac{cosα}{1+sinα}=\frac{1-sinα}{cosα}$
則$\frac{cosα}{sinα-1}$=$-\frac{\sqrt{3}}{3}$.
故選:B.

點(diǎn)評 本題考查三角函數(shù)化簡求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知PA是圓O的一條的切線,PB是圓經(jīng)過圓心O的割線,N為PB與圓O的另一交點(diǎn).
(1)過點(diǎn)A作PB的垂線AC,交PB于點(diǎn)M,交圓O于點(diǎn)C,連接BC,過點(diǎn)M作AB的平行線分別交BC于D,交PA于E,求證:DM=DB;
(2)若圓O的半徑為3,NM=$\frac{1}{2}$MB,求PN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a>b,c∈R,則下列不等式一定成立的( 。
A.a|c|≥bcB.|a|c≥bcC.a|c|≥b|c|D.|a|c≥b|c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在擲一個骰子的試驗(yàn)中,事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A∪$\overline{B}$發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列,Sn為{an}的前n項(xiàng)和,且S5=5,a3,a4,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求|a1|+|a2|+…+|a100|的值;
(Ⅲ)若集合$\{n|{(-1)^n}\frac{a_n}{2^n}>λ,n∈{N^*}\}$中有且僅有2個元素,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐M-ABCD中,底面ABCD為矩形,MD⊥平面ABCD,且MD=DA=1,E為MA中點(diǎn).
(1)求證:DE⊥MB;
(2)若DC=2,求三棱錐M-EBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=ln({1+mx})+\frac{x^2}{2}-mx$,其中m>0.
(Ⅰ)當(dāng)m=1時,求證:-1<x≤0時,$f(x)≤\frac{x^3}{3}$;
(Ⅱ)試討論函數(shù)y=f(x)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足$\frac{3sinA}{3cosA-2}$=-tanB,點(diǎn)E,F(xiàn)分別是AC,AB的中點(diǎn),則$\frac{BE}{CF}$的取值范圍是( 。
A.($\frac{1}{2}$,1)B.($\frac{1}{4}$,$\frac{7}{8}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{7}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知M為三角形ABC的邊BC的中點(diǎn),過線段AM的中點(diǎn)G的直線分別交線段AB,AC于點(diǎn)P,Q.若$\overrightarrow{AB}$=x$\overrightarrow{AP}$,$\overrightarrow{AC}$=y$\overrightarrow{AQ}$,則x+y的值是4.

查看答案和解析>>

同步練習(xí)冊答案