【題目】已知函數(shù),.
(1)若,判斷的奇偶性,并說明理由;
(2)若,,求在上的最小值;
(3)若,,有三個不同實根,求的取值范圍.
【答案】(1)奇函數(shù);(2)0;(3).
【解析】
(1)由判斷即可得解;
(2)由分段函數(shù)求值域問題分,,,,討論即可;
(3)由方程與函數(shù)的關(guān)系可得有三個不同實根,等價于函數(shù)與直線有三個交點,通過求函數(shù)的單調(diào)性及值域即可得解.
解:(1)當(dāng)時,,
則,
故為奇函數(shù);
(2)當(dāng)時,,
又,
①當(dāng)時,可得函數(shù)在為增函數(shù),可得;
②當(dāng)時,可得函數(shù)在為增函數(shù),在為減函數(shù),
由,
可得當(dāng)時,,即;
當(dāng)時,,即;
③當(dāng)時,由,可得;
綜上可得:當(dāng)時,函數(shù)在上的最小值為;
當(dāng)時,函數(shù)在上的最小值為;
當(dāng)時,函數(shù)在上的最小值為;
當(dāng)時,函數(shù)在上的最小值為即;
(3)因為,且有三個不同實根,
則函數(shù)不單調(diào),且,
因為,又,,
所以當(dāng)時,函數(shù)為增函數(shù),則時,函數(shù)不單調(diào),要使函數(shù)有三個不同實根,則,即,即,
故,
故的取值范圍為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓C1: 和橢圓C2: 的焦點相同且a1>a2.給出如下四個結(jié)論:
①橢圓C1和橢圓C2一定沒有公共點;
②;
③;
④a1-a2<b1-b2.
其中,所有正確結(jié)論的序號是( )
A. ②③④ B. ①③④
C. ①②④ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30 cm,寬26 cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為x cm和y cm,窗芯所需條形木料的長度之和為L.
(1)試用x,y表示L;
(2)如果要求六根支條的長度均不小于2 cm,每個菱形的面積為130 cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.平行的兩條直線的斜率一定存在且相等
B.平行的兩條直線的傾斜角一定相等
C.垂直的兩條直線的斜率之積為一1
D.只有斜率都存在且相等的兩條直線才平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖(1)為東方體育中心,其設(shè)計方案側(cè)面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當(dāng)時,若要求不超過45米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強
B.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在問歸分析中,為0.98的模型比為0.80的模型擬合的效果好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5張獎券中有2張是中獎的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:
(1)甲中獎的概率;
(2)甲、乙都中獎的概率;
(3)只有乙中獎的概率;
(4)乙中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺為宣傳本市,隨機對本市內(nèi)歲的人群抽取了人,回答問題“本市內(nèi)著名旅游景點有哪些” ,統(tǒng)計結(jié)果如圖表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出的值;
(2)根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點后兩位)和平均數(shù);
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com