【題目】下列說法錯誤的是( )

A.在線性回歸分析中,相關系數(shù)r的值越大,變量間的相關性越強

B.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系叫做相關關系

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.在問歸分析中,0.98的模型比0.80的模型擬合的效果好

【答案】A

【解析】

線性回歸分析中,相關系數(shù)r的絕對值越接近1,變量間的相關性越強,故錯誤,其他選項根據定義知正確,得到答案.

A. 在線性回歸分析中,相關系數(shù)r的絕對值越接近1,變量間的相關性越強,錯誤;

B. 根據相關關系的定義知正確;

C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高,正確;

D. 在問歸分析中,的值越大,模型擬合的效果越好,正確;

故選:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

已知橢圓和拋物線有公共焦點F(1,0),的中心和的頂點都在坐標原點,過點M4,0)的直線與拋物線分別相交于A,B兩點.

)寫出拋物線的標準方程;

)若,求直線的方程;

)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)分別求、的定義域,并求的值;

2)求的最小值并說明理由;

3)若,,是否存在滿足下列條件的正數(shù),使得對于任意的正數(shù),、都可以成為某個三角形三邊的長?若存在,則求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,對于一切,函數(shù)在區(qū)間內總存在唯一零點,求的取值范圍;

2)當時,數(shù)列的前項和,若是單調遞增數(shù)列,求的取值范圍;

3)當,時,函數(shù)在區(qū)間內的零點為,判斷數(shù)列、、、、的增減性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,判斷的奇偶性,并說明理由;

2)若,,求上的最小值;

3)若,,有三個不同實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果項有窮數(shù)列滿足,即,那么稱有窮數(shù)列為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列就是“對稱數(shù)列”.

(1)設數(shù)列是項數(shù)為7的“對稱數(shù)列”,其中成等比數(shù)列,且寫出數(shù)列的每一項;

(2)設數(shù)列是項數(shù)為的“對稱數(shù)列”,其中是公差為2的等差數(shù)列,且取得最大值時的取值,并求最大值;

(3)設數(shù)列是項數(shù)為的對稱數(shù)列”,且滿足為數(shù)列的前項和,若的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大數(shù)據時代對于現(xiàn)代人的數(shù)據分析能力要求越來越高,數(shù)據擬合是一種把現(xiàn)有數(shù)據通過數(shù)學方法來代入某條數(shù)式的表示方式,比如,2,n是平面直角坐標系上的一系列點,用函數(shù)來擬合該組數(shù)據,盡可能使得函數(shù)圖象與點列比較接近.其中一種描述接近程度的指標是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標系上5個點的坐標數(shù)據如表:

x

1

3

5

7

9

y

12

4

12

若用一次函數(shù)來擬合上述表格中的數(shù)據,求該函數(shù)的擬合誤差的最小值,并求出此時的函數(shù)解析式;

若用二次函數(shù)來擬合題干表格中的數(shù)據,求;

請比較第問中的和第問中的,用哪一個函數(shù)擬合題目中給出的數(shù)據更好?請至少寫出三條理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個墻角,兩墻面所成二面角的大小為有一塊長為米,寬為米的矩形木板.用該木板檔在墻角處,木板邊緊貼墻面和地面,和墻角、地面圍成一個直角三棱柱儲物倉

(1)當為多少米時,儲物倉底面三角形面積最大?

(2)當為多少米時,儲物倉的容積最大?

(3)求儲物倉側面積的最大值.

查看答案和解析>>

同步練習冊答案