A. | $\frac{1}{3}\vec a+\frac{1}{3}\vec b$ | B. | $\frac{1}{3}\vec a+\frac{2}{3}\vec b$ | C. | $\frac{1}{3}\vec a-\frac{2}{3}\vec b$ | D. | $\frac{1}{3}\vec a-\frac{1}{3}\vec b$ |
分析 由向量加法的平行四邊形法則可知$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{AD}$=$\overrightarrow{a}+\overrightarrow$,故$\overrightarrow{MA},\overrightarrow{MB}$都可用$\overrightarrow{a},\overrightarrow$來表示.
解答 解:∵四邊形ABCD是平行四邊形,∴$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{AD}$=$\overrightarrow{a}+\overrightarrow$,
∴$\overrightarrow{MA}$=-$\overrightarrow{AM}$=-$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow$)=-$\frac{1}{3}\overrightarrow{a}$-$\frac{1}{3}\overrightarrow$,
$\overrightarrow{MB}$=$\overrightarrow{MA}+\overrightarrow{AB}$=-$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow$)+$\overrightarrow{a}$,=$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}\overrightarrow$,
∴$\overrightarrow{{M}{A}}+\overrightarrow{{M}{B}}$=$\frac{1}{3}\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow$.
故選:C.
點評 本題考查了平面向量的加減運算及其集合意義,結(jié)合圖形是解題關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠ADE=20° | B. | ∠ADE=30° | C. | ∠ADE=$\frac{1}{3}$∠ADC | D. | ∠ADE=$\frac{1}{2}$∠ADC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=1,g(x)=x0 | B. | y=x與y=$\sqrt{{x}^{2}}$ | C. | y=x2與y=(x+1)2 | D. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | [1,2) | C. | (1,2] | D. | (1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com