7.設(shè)全集U=R,集合$A=\{x|\frac{x-1}{x-2}≥0\}$,則∁UA等于( 。
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

分析 先解不等式從而解出集合A,然后求∁UA.

解答 解:∵全集U=R,集合A={x|$\frac{x-1}{x-2}$≥0}={x|x≤1或x>2},
∴∁UA={x|1<x≤2},
故選C.

點(diǎn)評(píng) 本題主要考查集合的補(bǔ)集和不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)y1=40.9,y2=log${\;}_{\frac{1}{2}}$4.3,y3=($\frac{1}{3}$)1.5,則(  )
A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在平行四邊形ABCD中,M為對(duì)角線AC上一點(diǎn),且$\overrightarrow{{A}{M}}=\frac{1}{3}\overrightarrow{{A}C}$,設(shè)$\overrightarrow{{A}{B}}=\vec a$,$\overrightarrow{{A}D}=\vec b$,則$\overrightarrow{{M}{A}}+\overrightarrow{{M}{B}}$=(  )
A.$\frac{1}{3}\vec a+\frac{1}{3}\vec b$B.$\frac{1}{3}\vec a+\frac{2}{3}\vec b$C.$\frac{1}{3}\vec a-\frac{2}{3}\vec b$D.$\frac{1}{3}\vec a-\frac{1}{3}\vec b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)命題p:?x∈R,x2-4x+2m≥0(其中m為常數(shù))則“m≥1”是“命題p為真命題”的(  )
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.現(xiàn)有10個(gè)數(shù),它們能構(gòu)成一個(gè)以1為首項(xiàng),-2為公比的等比數(shù)列,若從這10個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),則它小于8的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=cosx,則$f(-\frac{π}{6})$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C:(x-1)2+(y-4)2=r2(r>0)
(Ⅰ)若直線x-y+5=0與圓C相交所得弦長為$2\sqrt{2}$,求半徑r;
(Ⅱ)已知原點(diǎn)O,點(diǎn)A(2,0),若圓C上存在點(diǎn)P,使得$|PO|=\sqrt{2}|PA|$,求半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),若f(m-1)+f(1-2m)>0,則實(shí)數(shù)m取值范圍為( 。
A.m>0B.0<m<$\frac{3}{2}$C.-1<m<3D.-<m<$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,稱這些函數(shù)為同族函數(shù).那么,函數(shù)的解析式為y=x2,值域?yàn)閧4,9}的同族函數(shù)共有(  )
A.7個(gè)B.8個(gè)C.9個(gè)D.10個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案