設(shè)f(θ)=
2cos2θ+sin2(θ+
π
2
)-2cos(-θ-π)
2+2cos2(7π+θ)+cos(-θ)
,求f(
π
3
)的值.
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:利用誘導(dǎo)公式化簡函數(shù)的解析式,然后求解函數(shù)值即可.
解答: 解:f(θ)=
2cos2θ+sin2(θ+
π
2
)-2cos(-θ-π)
2+2cos2(7π+θ)+cos(-θ)

=
2cos2θ+cos2θ+2cosθ
2+2cos2θ+cosθ
,
f(
π
3
)=
2cos2
π
3
+cos2
π
3
+2cos
π
3
2+2cos2
π
3
+cos
π
3

=
1
4
+
1
4
+2×
1
2
2+2×
1
4
+
1
2

=
7
24
點評:本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡求值,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P(2,0)和曲線C:x2+y2-3x+3y+1=0上的點Q之間的距離的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m-x2
-logax的零點為x1,函數(shù)g(x)=
m-x2
-ax的正零點為x2,其中a>0且a≠1,m>1,則下列選項一定正確的是( 。
A、x12+x22=m
B、x1>x2
C、x1<x2
D、x12+x22的值與a值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD,G,H分別是DF,BE的中點.四棱錐F-ABCD的體積的最大值( 。
A、4
B、
4
3
C、
2
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+2x,則f(5)+f(-5)的值是(  )
A、0B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
ex
-sin
x
2
cos
x
2
的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的斜率k=-2m-m2,m∈R,求直線l的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn和通項公式an滿足Sn=
1
2
(1-an
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=nan,求Tn=b1+b2+…+bn的值.

查看答案和解析>>

同步練習(xí)冊答案